Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)

Department of Computer Science and Engineering

Effective from Academic Year 2023-24

Board of Studies Approval: 02nd July 2024

Academic Council Approval: 20th August 20214

Dr. D. R. Kalbande HOD, CSE Dr. Y. S. Rao Dean Academics Dr. B. N. Chaudhari Principal

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)

[Knowledge is Nectar]

<u>Liberal, Pi-Model of Engineering Education @ SPIT</u>
(Department of Computer Science and Engineering)

CURRICULUM STRUCTURE FOR UNDERGRADUATE ACADEMIC PROGRAMS IN COMPUTER ENGINEERING AT SPIT W.E.F. A.Y. 2023-24 [2023-2027 BATCH]

A common scheme for "Computer Science and Engineering" and "Computer Engineering" till Semester V.

Preamble: Government of Maharashtra has directed Autonomous Colleges to revise their curriculum and step into the implementation of National Education Policy (NEP) 2020. We commit ourselves to the effective and fruitful implementation of NEP 2020 in its spirit. The holistic development of learners has always been the priority and center of focus for "Bharatiya Vidya Bhavan". S.P.I.T. started implementing the philosophy of NEP in the year 2019 itself. We have in fact graduated the first batch of our holistic curriculum in 2023. Now based on our learnings from the implementation and recent recommendations of the Government, we are pleased to offer a 2nd iteration of our holistic curriculum for 2023-27, a Liberal Pi Model of Engineering Education.

This curriculum aims at the development of an **all-rounded** personality. It follows a **holistic** approach to education, ensures strong science, and mathematics foundation and program core, develops expertise in domain vertical through the sequel of electives, ensures significant exposure to additional discipline through a "Multidisciplinary Minor" courses, imparts state of the art practical knowledge through a semester-long industry / research internship, collaborates outside world for the imparting relevant skill courses, challenges good learners through "Honors" evaluation, and systematically develops soft skills, and social, physical, mental, spiritual personality through carefully articulated **Liberal Learning** and **Humanities** sequels. Thus, it offers a unique, liberal "**Pi-Model**" of Engineering Education.

Sardar Patel Institute of Technology

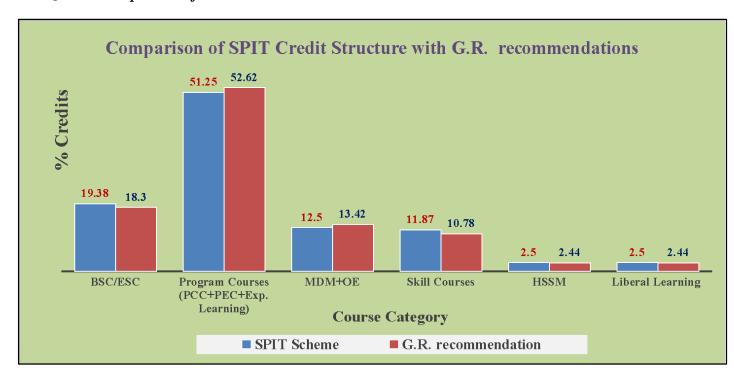
(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Table 1: Nomenclature of the courses in the curriculum

Groups	Abbreviation	Course Category
Basic Sciences and Engineering	BSESC	Basic Science & Engineering Science Courses
Sciences Courses (BSES)	BSESEC	Basic Science & Engineering Science
*		Elective Courses
Skill Based Courses (SBC)	SEC	Skill Enhancement Course
	CC	Co-curricular Courses
Humanities, Social Science and	HSSMC	Humanities, Social Science and Management
Management (HSSM) Courses		Courses
	CP	Community Project
Ability Enhancement Courses	IKS	Indian Knowledge System
(AEC)	UHV	Universal Human Values
Program Related Courses (PRC)	PCC	Program Core Courses
	PEC	Program Elective Courses
	ELC	Experiential Leaning Courses
Multi-Cross-Trans disciplinary	OEC	Open Elective Courses
courses (MCTD)	MDM	Multidisciplinary Minor

Indicative List of BSESE Courses:

- Engineering Physics
- Engineering Chemistry
- Biology for Engineers
- Engineering Mechanics
- Engineering Graphics
- Material Science
- Environmental Science
- Thermal & Fluid Engineering



Sardar Patel Institute of Technology

Table 2: Comparison of S.P.I.T. credit structure with the G.R. recommendations

					SP	IT					
Sem	BSES	SE C	AE C	HSSM	CC (LLC	PCC	PEC	OE	EXP LEARNIN G	MD M	Total
I	11	5	2		1						19
II	11	5	2		1				2		21
III	6	2		2	1	12					23
IV	3	2		2	1	12				3	23
V						17			2	4	23
VI		2				7	6		2	3	20
VII							6	3	4	4	17
VIII								3	11		14
Total	31	16	4	4	4	48	12	6	21	14	160
%	19.38	10	2.5	2.5	2.5	30	7.5	3.75	13.125	8.75	100
G.R. (NEP-2020) Recommended											
Total	30	10	8	4	4	44	20	8	22	14	164
%	18.3	6.1	4.88	2.44	2.44	27	12.2	4.88	13.42	8.54	100


Figure 1: Comparison of S.P.I.T. credit structure with the G.R. recommendations

Sardar Patel Institute of Technology

Figure 2: Pie-chart of vertical-wise allocation of credits

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Table 3: Semester-wise allocation of credits to different verticals

Table	SEM I											
Sr. No	Course Category	Abbrevi ation	Course Code	Course Name	L	T	P	0	E	С		
1	Basic & Engg. Sciences	BSES	MA101	Mathematics I (ECL)	3	1	0	8	12	4		
2	Skill Enhancement Course	SEC	CE101	Problem Solving using Imperative Programming Lab	0	1	2+2	4	9	3		
3	Basic &	BSESE		Course I						3		
	Engg. Sciences		AS101	Engineering Physics	2	0	2	4	8			
	Elective		AS102	Engineering Chemistry	2	0	2	3	7			
			AS103	Biology for Engineers	3	0	0	3	6			
			AS104	Engineering Mechanics	2	0	2	4	8			
			AS105	Engineering Graphics	1	0	2+2	2	7			
			AS108	Material Science	2	0	2	4	8			
			AS109	Environmental Science	3	0	0	3	6			
			AS110	Energy Science	2	0	2	3	7			
			AS111	Thermal & Fluid Engineering	3	0	0	3	6			
4	Skill	SEC	AS106	Tech Shop	1	0	2	2	5	2		
	Enhancement course		AS107	Soft Skill I								
5	Basic &	BSES	ET101	Digital Systems	3	0	2	5	10	4		
	Engg. Sciences		ET102	Basic Electrical Engineering	3	0	2	6	11			
6	Ability	AEC	AS108	IKS	2	0	0	1	3	2		
	Enhancement -*Course		AS109	UHV								
7	Cocurricular Courses	CC (LLC)	LLCXX	LLCI	1	0	0	2	3	1		
				Total	12	2	10	25	49	19		

Sardar Patel Institute of Technology

				SEM-II						
Sr. No	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	0	E	С
1	Basic & Engg. Sciences	BSES	MA102	Mathematics II (DECA)	3	1	0	8	12	4
2	Skill Enhancement Course	SEC	CE102	Problem Solving using Object Oriented Programming Lab	0	1	2+2	4	9	3
3	Basic &	BSESE		Course I						3
	Engg. Sciences		AS101	Engineering Physics	2	0	2	4	8	
	Elective		AS102	Engineering Chemistry	2	0	2	3	7	
	21000.70		AS103	Biology for Engineers	3	0	0	3	7	
			AS104	Engineering Mechanics	2	0	2	4	8	
			AS105	Engineering Graphics	1	0	2+2	2	7	
			AS108	Material Science	2	0	2	4	8	
			AS109	Environmental Science	3	0	0	3	6	
			AS110	Energy Science	2	0	2	3	7	
			AS111	Thermal & Fluid Engineering	3	0	0	3	6	
4	Skill	SEC	AS106	Tech Shop	1	0	2	2	5	2
	Enhancement course		AS107	Soft Skill I						
5	Basic &	BSES	ET101	Digital Systems	3	0	2	5	10	4
	Engg. Sciences		ET102	Basic Electrical Engineering	3	0	2	6	11	
6	Ability	AEC	AS108	IKS	2	0	0	1	3	2
	Enhancement -*Course		AS109	UHV						
7	Cocurricular Courses	CC (LLC)	LLCXX	LLCI	1	0	0	2	3	1
				Total	12	2	10	25	49	19

	Summer Term											
Sr. No	Course Category	Abbreviation	Course Code	Course Name	L	T	P	0	E	C		
1	Experiential Learning	CP (in Summer)	PR101	Community Project	0	0	4	4	8	2		
2	HSSE	COI	AS112	Constitution of India (2Hrs/Week)	1	0	0	1	2	NC		

Sardar Patel Institute of Technology

	SEM III											
Sr. No	Course Category	Abbrev iation	Course Code	Course Name	L	Т	P	0	E	С		
1	Basic & Engg. Sciences	BSES	CS201	Discrete Structures and Graph Theory	3	0	0	5	8	3		
2	Basic & Engg. Sciences *	FOM-I	MA202	Foundation of Mathematics-I*	2	1	0	0	3	3		
3	Skill Enhancement Course	SEC	AS201	Soft Skill II-Professional Communication Skills	0	1	2	4	7	2		
4	Basic &	BSESE		Course I						3		
	Engg. Sciences		AS101	Engineering Physics	2	0	2	4	8			
	Elective		AS102	Engineering Chemistry	2	0	2	3	7			
	2.000.70		AS103	Biology for Engineers	3	0	0	3	7			
			AS104	Engineering Mechanics	2	0	2	4	8			
			AS105	Engineering Graphics	1	0	2+2	2	7			
			AS108	Material Science	2	0	2	4	8			
			AS109	Environmental Science	3	0	0	3	6			
			AS110	Energy Science	2	0	2	3	7			
			AS111	Thermal & Fluid Engineering	3	0	0	3	6			
5	Humanities	HSSM-I	HS2XX	Course I	2	0	0	3	5	2		
7	Program Core	PCC	CS202	Data Structures	3	0	2	4	9	4		
8	Courses (12 Credits)	PCC	CS203	Computer Organization and Architecture	3	0	2	4	9	4		
9		PCC	CS204	Database Management Systems	3	0	2	4	9	4		
10	Cocurricular Courses	CC (LLC)	LLCXX	LLCIII	1	0	0	1	2	1		
				Total	17	1	10	28	56	23		

Sardar Patel Institute of Technology

				SEM IV						
Sr N o	Course Category	Abbreviation	Course Code	Course Name	L	Т	P	0	E	C
1	Basic & Engg. Sciences	BSES	CS205	Statical Methods in Computer Science	3	0	0	6	9	3
2	Basic & Engg. Sciences *	FOM-II	MA204	Foundation of Mathematics-II*	2	1	0	0	3	3
3	Skill enhancement course	SEC	AS202	Python Programming for Data science	0	1	2	4	7	2
4	Humanities	HSSM-II	HS2XX	Course II	2	0	0	3	5	2
5		PCC	CS206	Operating Systems	3	0	2	4	9	4
6	Program Core Courses (12 credits)	PCC	CS207	Design and Analysis of Algorithms	3	0	2	4	9	4
7		PCC	CS208	Computer Communications and Networks	3	0	2	4	9	4
8	Cocurricular Courses	CC (LLC)	LLCXX	LLCIV	1	0	0	1	2	1
9	Multidisciplinar y Minor	MDM	MDEC1 X	MDM-I	To		defi othe	ned l	Эy	3
				Total	1 5	1	8	2 6	5 0	23

^{*}Only for Lateral Entry Students

	Summer term (For Lateral Entry Students)											
Sr. No	Course Category	Abbreviation	Course Code	Course Name	L	T	P	0	E	C		
1	Basic &	BSES	CS201	Discrete Structures and Graph Theory	3	0	0	5	8	3		
2	Engg. Sciences	DSES	CS205	Statical methods in Computer Science	3	0	0	6	9	3		

- Students are expected to start working for the Mini Project I during the summer.
- Research internship of minimum 2 months for the "Honors by Research" for 6 credits- HR21 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

Sardar Patel Institute of Technology

	SEM V											
Sr. No	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	О	E	С		
1	Experiential Learning	ELC	PR1	Mini Project I	0	0	4	4	8	2		
2		PCC	CS301	Distributed Computing	2	0	2	6	10	3		
3		PCC	CS302	Software Engineering	2	0	2	6	10	3		
4	Program Core Courses (17	PCC	CS303	Artificial Intelligence and Soft Computing	3	0	2	6	11	4		
5	Credits)	PCC	CS304	Theory of Computation	3	0	0	5	8	3		
6		PCC	CS305	Cryptography and Network Security	3	0	2	5	10	4		
7	Multidisciplinar y Minor	MDM	MDEC2 X	MDM-II	To be defined by others			4				
		Total			13	0	12	32	57	23		

- Research internship of minimum 1 month for the "Honors by Research" for 3 credits HR31 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

	SEM VI										
Sr No	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	O	E	C	
1	Program Core Courses	PCC	CS306	Human Machine Interaction	3	0	2	4	9	4	
2	(7credits)	PCC	CS307	Machine Learning	2	0	2	5	9	3	
3	Multidisciplinar y Minor	MDM	MDEC3X	To be defined by						3	
4	Experiential Learning	ELC	PR3-I	Main Project Stage I	0	0	4	4	8	2	
5	Program Elective Courses	PEC	CS3X1	PE-I	2	0	1	4	7	3	
6	Program Elective Courses	PEC	CS3X2	PE-II	2	0	1	4	7	3	
7	Skill Enhancement Course	SEC	CS308	DevOps Lab	0	1	2	2	5	2	
				Total	9	1	12	23	45	20	

Sardar Patel Institute of Technology

- Research internship of minimum 2 month for the "Honors by Research" for 6 credits HR32 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

Sardar Patel Institute of Technology

			SEM VII						
Course Category	Abbreviation	Course Code	Course Name	L	Т	P	0	E	C
Multidisciplinar y Minor	MDM	MDEC4	MDM-IV		To be	defined	others		4
Program Elective Courses	PEC	CS4X3	PE-III	2	0	1	4	7	3
Program Elective Courses	PEC	CS4X4	PE-IV	2	0	1	4	7	3
Open Elective	OE	OE1	OE-I	2	0	1	4	7	3
Experiential Learning	ELC	PR3-II	Main Project Stage II	0	0	8	4	12	4
			Total	6	0	11	16	33	17

- Research internship of minimum 1 month for the "Honors by Research" for 3 credits HR41 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

				SEM VIII						
Sr. No	Course Category	Abbrev iation	Course Code	Course Name	L	T	P	0	E	C
1	Open Elective	OE	OE2	OE-II**	2	0	1	4	7	3
			INTR	Research/ Industry						
2	Experiential Learning	ELC	INTI	Internship/Main Project Stage III***	0	0	24	12	36	11
			PR4-III	111						
				Total	2	0	25	16	43	14

^{**} To be completed from MOOCs

^{***}Students neither taking research or industry internship nor willing to extend their project work can earn additional 11 credits from Swayam Platform or NPTEL or registering courses from any peer institution of higher learning., besides open elective program elective courses offered by the institute.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Indicative List of Humanities courses (HSSM-I):

Course Code	Course Title	Course Code	Course Title
HS211	Law for Engineers-I	HS212	Law for Engineers-II
HS221	Psychology -I	HS222	Psychology -II
HS231	Finance for Engineers-I	HS232	Finance for Engineers-II
HS241	Economics-I	HS242	Economics-II
HS251	French-I	HS252	French-II
HS261	German-I	HS262	German-II
HS271	Japanese-I	HS272	Japanese-II
HSNP	NPTEL (HSS/Management)	HSNP	NPTEL (HSS/Management)

Indicative List of Cocurricular courses (LLC)

Course Code	Course Title
LLC01	Dance (Kathak)
LLC02	Dance (Bharatnatyam)
LLC02	Fundamentals of Photography
LLC03	Art of Short Film Making / Cinematography
LLC04	Film Appreciation
LLC05	Basics of Music Composition
LLC06	Basics of Keyboard playing
LLC07	Physical Fitness
LLC08	Self Defense for Women
LLC09	Pran-Vidya (Combo of Yoga and Pranayam)
LLC10	Jeevan Vidya (Work Life Balance)
LLC11	Integrated Personality Development-I
LLC12	Indian Knowledge System-I
LLC13	Design Thinking
LLC14	Innovation and Creativity
LLC15	Principle Centered Leadership
LLC16	Social Psychology
LLC17	Mentoring of School Children at SPIT (Abhudaya)
LLC18	Basics of Fire Safety
LLC19	Study of one of the Identified Books
LLC20	Teaching Assistantship
LLC21	Trekking
LLC22	Kannada Language
LLC23	Telugu Language
LLC24	Tamil Language
LLCXX	Any other Course approved by Dean Academics and Research

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

PROGRAM ELECTIVE COURSES

4 Electives are sufficient to specialize in a particular domain.

Track	PE-I CS3X1	PE-II CS3X2	PE-III CS4X3	PE-IV CS4X4
Emerging	CS311:	CS312:	CS413:	CS414:
Networking	Digital Forensic	Cloud Computing	Block chain	IT Infrastructure
Technologies			Technology	Monitoring and
				Management
Emerging AI	CS321:	CS322:	CS423:	CS424:
	Natural Language	Deep Learning	Generative AI	Explainable AI
	Processing			
Data Analytics	CS331:	CS332:	CS433:	CS434:
•	Business analytics	Big data Analytics	Data Warehouse and	AI for Healthcare
	with Python		Mining	Analytics
Digital Visualization	CS341:	CS332:	CS433:	CS434:
	Fundamentals of	Augmented Reality	Computer Vision	Visual Intelligence
	Signal & Image	&Virtual Reality [AR-		
	Processing	VR]		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Indicative list of Multidisciplinary Minors

MDM Sequels for EXTC

- Computer Engineering
- AIML
- Data Science
- Interface and Experience Design
- IT Infrastructure

Course Category of Multidisciplinary Minor	MDM-I (Semester IV)	MDM-II (Semester V)	MDM-III (Semester VI)	MDM-IV (Semester VII)
Computer Engineering	MDCE11: Database Management Systems	MDCE12: Data Structures and Algorithms	MDCE13: Cloud Computing	MDCE14: Internet and Web Technology
Artificial Intelligence and Machine Learning	MDCE21: Fundamentals of NNFL	MDCE22: Artificial Intelligence Machine Learning	MDCE23: Natural Language Processing	MDCE24: Image Processing and Pattern Recognition
Data Science	MDCS31: Fundamentals of Data Science	MDCS32: Data Analytics and Visualization	MDCS33: Decision Making and Business Intelligence	MDCS34: Social Media Analytics
Interface and Experience Design	MDCS41: UI/UX Fundamentals	MDCS42: Design Thinking and Innovations	MDCS43: Human Computer Interaction	MDCS44: Total Experience Design
IT Infrastructure	MDCE51: IT Infrastructure and DevOps Lab	MDCE52: Virtualization and Computing	MDCE53: SDN and NFV	MDCE54: Network Management

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

MDM Sequels for CE/CSE

- Industrial IoT
- Digital Signal Processing
- Electronics Communication
- VLSI
- Mathematics and Statistics
- Finance
- Economics

Course Category of Multidisciplinary Minor	MDM-I (Semester IV)	MDM-II (Semester V)	MDM-III (Semester VI)	MDM-IV (Semester VII)
Industrial IoT	MDEC11: Fundamental of Internet of Things	MDEC12: Embedded "C" and Micro Python for IoT	MDEC13: IOT Communication and Network Layer Protocols	MDEC14: IoT Applications and Security
Digital Signal Processing	MDEC21: Digital Signal Processing	MDEC22: Digital Image Processing	MDEC23: Multimedia Signal Processing	MDEC24: Digital Signal Processor System Design
Electronics Communication	MDEC31: Linear Electronics Circuit	MDEC32: Principles of Communication & Systems	MDEC33: Data Compression and Encryption	MDEC34: Wireless Communication and Networks
VLSI	MDEC41: Hardware Description Language programming	MDEC42: Digital CMOS VLSI Design	MDEC43: VLSI Physical Design	MDEC44: ASIC Verification

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Notes:

- 1. Learners who earn a minimum of total 160 credits will be awarded "B. Tech in Engg. /Tech. with Multidisciplinary Minor" degree.
- 2. Learners will have the following options to earn **B. Tech. in Engg. /Tech. degree with MDM and Honors Certification.** If learners earn top grades in any 8 Program core courses. They will be awarded a Honors Certification.
- 3. Learners who earn 18 additional credits through 6-month (2+1+2+1) Research Internships during summer and winter breaks, as mentioned in the scheme, are eligible for the degree: "B. Tech. in Engg. /Tech. with Multidisciplinary Minor and Honors by Research", subject to earning CGPA of 8.25 throughout all semesters.
- 4. Learner can earn the certificates based on his/her exit from the program as follows:
 - a) After a one-year (40 credits to be earned) and 8-week summer workshop: Certificate in Engineering.
 - b) After two-years (80 credits to be earned) and 8-week summer workshop: **Diploma in Engineering**.
 - c) After three-years (120 credits to be earned) and 8-week summer workshop: **B. Sc. Engineering.**

Dr. D. R. Kalbande Dr. Y. S. Rao Dr. B. N. Chaudhari
HoD Computer Science and Engg. Dean Academics & Research Principal

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SYLLABUS SEMESTER I

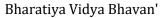
				SEM I							
Sr. No	Course Category	Abbrev iation	Course Code	Course Name	L	Т	P	0	E	С	
1	Basic & Engg. Sciences	BSES	MA101	Mathematics I (ECL)	3	1	0	8	12	4	
2	Skill Enhancemen t Course	SEC	CE101	Problem Solving using Imperative Programming Lab	0	1	2+2	4	9	3	
3	Basic & Engg.	BSESE		Course I						3	
	Sciences Elective		AS101	Engineering Physics	2	0	2	4	8		
	Elective		AS102	Engineering Chemistry	2	0	2	3	7		
			AS103	Biology for Engineers	3	0	0	3	6		
			AS104	Engineering Mechanics	2	0	2	4	8		
			AS105	Engineering Graphics	1	0	2+2	2	7		
			AS108	Material Science	2	0	2	4	8		
			AS109	Environmental Science	3	0	0	3	6		
			AS110	Energy Science	2	0	2	3	7		
			AS111	Thermal & Fluid Engineering	3	0	0	3	6		
4	Skill	SEC	AS106	Tech Shop	1	0	2	2	5	2	
	Enhancemen t course		AS107	Soft Skill I							
5	Basic & Engg.	BSES	ET101	Digital Systems	3	0	2	5	10	4	
	Sciences		ET102	Basic Electrical Engineering	3	0	2	6	11		
6	Ability	AEC	AS108	IKS	2	0	0	1	3	2	
	Enhancemen t -*Course		AS109	UHV							
7	Cocurricular Courses	CC (LLC)	LLCXX	LLCI	1	0	0	2	3	1	
				Total	12	2	10	25	49	19	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SEMESTER II

				SEM-II						
Sr. No	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	0	Е	С
1	Basic & Engg. Sciences	BSES	MA102	Mathematics II (DECA)	3	1	0	8	12	4
2	Skill Enhancemen t Course	SEC	CE102	Problem Solving using Object Oriented Programming Lab	0	1	2+	4	9	3
3	Basic &	BSESE		Course I						3
	Engg. Sciences		AS101	Engineering Physics	2	0	2	4	8	
	Elective		AS102	Engineering Chemistry	2	0	2	3	7	
	21cocive		AS103	Biology for Engineers	3	0	0	3	7	
			AS104	Engineering Mechanics	2	0	2	4	8	
			AS105	Engineering Graphics	1	0	2+2	2	7	
			AS108 Material Science				2	4	8	
			AS109	Environmental Science	3	0	0	3	6	
			AS110	Energy Science	2	0	2	3	7	
			AS111	Thermal & Fluid Engineering	3	0	0	3	6	
4	Skill	SEC	AS106	Tech Shop	1	0	2	2	5	2
	Enhancemen t course		AS107	Soft Skill I						
5	Basic &	BSES	ET101	Digital Systems	3	0	2	5	10	4
	Engg. Sciences		ET102	Basic Electrical Engineering	3	0	2	6	11	
6	Ability	AEC	AS108	IKS	2	0	0	1	3	2
	Enhancemen t -*Course		AS109	UHV						
7	Cocurricular Courses	CC (LLC)	LLCXX	LLCI	1	0	0	2	3	1
				Total	12	2	10	25	49	19



Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

First Year Evaluation Scheme (Percentage)

Sr. No.	Course Code	Course Name	Credits	ISE (%)	MSE (%)	ESE (%)	Sub-total (%)	Total	
1	MA101	Engineering Calculus-Theory	4	20	20	60	100	100	
2	EC101	Digital Systems- Theory	3	15	15	45	75	100	
		Digital Systems- Lab	1	15	0	10	25		
3 EC102		Basic Electrical Engineering- Theory	3	15	15	45	75	100	
		Basic Electrical Engineering - Lab	1	15	0	10	25		
4	AS101	Engineering Physics-Theory	2	13.5	13.5	40	67	100	
		Engineering Physics-Lab	1	26	0	07	33		
5	AS102	Engineering Chemistry- Theory	2	13.5	13.5	40	67	100	
		Engineering Chemistry-Lab	1	26	0	07	33		
6	AS103	Biology for Engineers- Theory	3	20	20	60	100	100	
7	AS104	Engineering Graphics - Theory	1	13	0	20	33	100	
		Engineering Graphics-Lab	2	40	0	27	67		
8	AS105	Engineering Mechanics- Theory	2	13.5	13.5	40	67	100	
		Engineering Mechanics-Lab	1	26	0	07	33		
9	AS108	Material Science and Engineering- Theory	3	20	20	60	100	100	
10	AS109	Environmental Science -Theory	3	20	20	60	100	100	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

11	AS110	Energy Science -Theory	3	20	20	60	100	100
12	AS111	Thermal & Fluid Engineering - Theory	3	20	20	60	100	100
13	AS106	Tech Shop- Lab	2	80	0	20	100	100
14	AS107	Soft Skill I	2	80	20	0	100	100
15	CE101	Programming I - Lab	3	80	0	2	100	100
16	CE102	Programming II -Lab	3	80	0	20	100	100
17	AEC01	IKS	2	80	0	20	100	100
18	AEC02	UHV	2	80	0	20	100	100
19	LLC01	LLCXX	1	100	0	0	0	100
20	LLC02	LLCXX	1	100	0	0	0	100
21	PRJ01	Project-01	2	80	0	20	100	100

Note: Course coordinators desirous of changing the percentage allocation to ISE: MSE: ESE for Theory / Lab of any course, must seek approval of Dean Academics and the Principal,

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Engineering Calculus: Sem-I

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
	Mathematics I (Engineering	3	1	0	8	12	3	1	0	4
(BSES)		Examination Scheme								
		Component]	ISE		MSE		CSE	Total
MA101	Calculus)	Theory		2	20%		20%		0%	100%
WIZIOI		Laboratory								-

Pre-requisite	Course Codes, if any.	Basics of derivatives and integration done earlier.						
Course Object	Course Objective: To develop mathematical skills for solving engineering problems.							
Learning Outcomes (LO): At the End of the course students will be able to:-								
MA101.1	oifferentiate a function partially.							
MA101.2	Find extreme values of a	given function.						
MA101.3	Find the nth order deriva	tive of a given function.						
MA101.4	Expand a given function a	as a power series.						
MA101.5 Calculate the value of integrals in one variable using different techniques.								
MA101.6	Solve multiple integral in	various coordinate systems and use to calculate Area.						

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MA101.1	3											
MA101.2	3											
MA101.3	3											
MA101.4	3											
MA101.5	3											
MA101.6	3											

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA101.1						
MA101.2						
MA101.3						
MA101.4						
MA101.5						
MA101.6						

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Partial Differentiation	1,2,3	10
	1.1	Partial derivatives of first and higher order. Partial derivatives of composite functions.		4
	1.2	Euler's theorem for homogeneous functions with two and three independent variables, deductions from Euler's theorem.		3
	1.3	Application of partial derivatives: i) Local Maxima and Minima of functions of two variables. ii) Lagrange's Method of undetermined multipliers.		3
2	Title	Successive Differentiation and Series	1,2,3	10
	2.1	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of De Moivre's theorem and partial fractions to calculate nth derivatives of given functions.		3
	2.2	Leibnitz's Theorem on nth derivative of product of two functions		2
	2.3	Infinite series: 1) McLaurin's series (without proof) and derivation of series of some standard functions using Maclaurin series. Expansion of functions in powers of x by using i) Standard series method ii) Method of differentiation and integration. 2) Taylor's series and applications.		5
3	Title	Integral Calculus (one variable)	1,2,3	8
	3.1	Gamma functions: properties of gamma functions and integrals reducible to gamma functions.		2
	3.2	Beta functions: properties, relation between Beta and Gamma functions, integrals reducible to Beta functions, Duplication formula.		4
	3.3	Differentiation under Integral sign: differentiating integrals with constant limits of integration for one parameter.		2
4	Title	Integral Calculus (multi variable)	1,2,3	14
	4.1	Tracing of curves. Sketching standard solids (Spheres, Ellipsoids, Cylinders, Cones, Tetrahedrons, planes).		2
	4.2	Double Integration: definition and evaluation. Evaluate by changing the order of integration and by changing to polar form.		7
	4.3	Application of double integral to finding area of given regions.		2
	4.4	Triple integration: definition and evaluation (Cartesian and cylindrical coordinates).		3

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

5	Self	1.1 Partial differentiation of implicit functions.	1,2,3	08
	Study	2.3 Series by method of Substitution.		
		3.2 Proof of Duplication Formula.		
		3.3 Differentiation under Integral sign using two parameters.		
		4.1 Finding lengths of curves in Cartesian and polar form.		
Total				42*

^{*}Total of 42 hours does not include self-study hours.

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020
1	Mathematics	Forty Fourth	DI. B. 3. GIEWAI	Kildilila FUDIICALIOIIS	2020

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year	
1	Advanced Engineering	Twenty	H.K Das	S. Chand	2014	
	Mathematics Advanced Engineering	Eighth				
2	Mathematics Mathematics	Tenth	Erwin Kreysizg	John Wiley & Sons	2011	
3	Advanced Engineering Mathematics	Fourth	Jain and Iyengar	Narosa Publications	2014	
4	Higher Engineering Mathematics	Eleventh	B.V. Ramana	Tata McGraw-Hill	2010	
5	Advanced Engineering Mathematics	Sixth	Dennis G. Zill	Jones and Bartlett	2016	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Differential Equations and Complex Analysis: Sem-II

Course (Category	Course Name	Teaching Scheme (Hrs/week)					(Credits Assigned				
) Code	Course Ivame	L	Т	P	o	E	L	T	P	Total		
		3	1	0	8	12	3	1	0	4		
(BSES)	Mathematics II	Examinat				ninati	on Sche	me		_		
	(Differential Equations and	Con	nponei	nt	ISE		MSE	E	ESE	Total		
MA102	Complex Analysis)	T	heory		20%		20%	6	0%	100%		
		Lab	orator	y								

Pre-requisit	e Course Codes, if any.	Topics from Engineering Calculus- Semester I					
Course Obje	Course Objective: To develop mathematical skills for solving engineering problems.						
Learning O	Learning Outcomes (LO): At the End of the course students will be able to:-						
MA102.1	Solve differential equation	olve differential equations of first order.					
MA102.2	Solve differential equation	ns of higher order using operators.					
MA102.3	Solve differential equation	s in electrical engineering problems.					
MA102.4	Find powers, roots & loga a complex number into rea	rithm of a complex number and to separate the function of al and imaginary.					
MA102.5	Check whether a given fun	Check whether a given function is analytic and construct analytic functions.					
MA102.6	Compute integrals of comp	blex valued functions.					

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
	1	2								0	1	2
MA102.1	3											
MA102.2	3											
MA102.3	3											
MA102.4	3											
MA102.5	3											
MA102.6	3											

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA102.1							
MA102.2							
MA102.3							
MA102.4							
MA102.5							
MA102.6							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

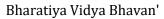
Theory Component

Module No.	Unit No.	Topics	Ref	Hrs ·
1	Title	Linear Differential Equations of first order	1,2,3	11
	1.1	Exact Differential Equations, Integrating Factors, and equations reducible to exact form.		3
	1.2	Linear differential equations (Definition), equations reducible to linear form, Bernoulli's equation.		2
	1.3	Simple application of differential equation of first and second order to electrical engineering problems.		2
	1.4	Numerical solution of ordinary differential equations of first order and first degree using (a)Taylor's series method (b)Euler's method (c) Modified Euler method (d) Runge-Kutta fourth order formula		4
2	Title	Linear Differential Equations of higher order	1,2,3	11
	2.1	Linear Differential Equation with constant coefficient-complementary function, particular integrals of differential equation of the type $f(D)y = X$ where X is e^{ax} , $\sin(ax+b)$, $\cos(ax+b)$, χ^m , $e^{ax}V$, xV, where V is a function of x.		7
	2.2	Cauchy's homogeneous linear differential equation and Method of variation of parameters for second order.		2

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	2.3	System of Differential Equations.		2
3	Title	Complex Numbers	1,2,3	8
	3.1	De Moivre's Theorem and its application to determine powers of complex numbers. Roots of complex numbers by De Moivre's Theorem.		3
	3.2	Expansion of $\sin n\theta$ and $\cos n\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$. Expansion of $\sin \theta$ and $\cos \theta$ in terms of sines and cosines of multiples of θ .		1
	3.3	Hyperbolic Functions: relation between circular and hyperbolic functions, Inverse hyperbolic functions. Separation into real and imaginary parts of complex functions.		3
	3.4	Logarithm of a complex number.		1
4	Title	Analytic functions and Complex Integrals	1,2,3	12
	4.1	Analytic functions, Cauchy Riemann equations in Cartesian and polar form, construction of analytic functions using Milne-Thompson's method, Harmonic functions, poles of f(z).		6
	4.2	Line Integral of complex valued function, Cauchy's Integral theorem for simply connected regions, Cauchy's Integral formula (for poles lying inside or outside the curve).		6
5	Self Study	 1.3 To form D.E. for given L-C-E-R circuit. 2.1 Method of undetermined coefficients to solve differential equations. 2.2 Legendre's differential equation, Method of variation of parameters for third order differential equations. 3.2 Complex examples using De Moivre's Theorem. 4.1 Construction of analytic function f(z) =u+iv when u+v or u-v is given. 		08
			Total	42*


^{*}Total of 42 hours does not include self-study hours.

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Higher Engineering	Forty Fourth	Dr.B.S.	Khanna	2020
	Mathematics		Grewal	Publications	

Reference Books

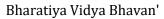
Sr. No	Title	Edition	Authors	Publisher	Year
1.	Advanced Engineering Mathematics	Twenty Eighth	H.K Das	S.Chand	2014

Sardar Patel Institute of Technology

2.	Advanced Engineering	Tenth	Erwin	John Wiley	2011
	Mathematics		Kreysizg	& Sons	
3.	Advanced Engineering	Fourth	Jain and	Narosa	2014
	Mathematic		Iyengar	Publications	
4.	A First Course in Differential Equations with Modelling Applications	Ninth	Dennis G. Zill	Cengage India	2009

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058


Engineering Physics

Course		Teaching Scheme (Hrs/week)				Credits Assigned				
(Category) Code	Course Name	L	T	P	0	E	L	T	P	Total
		2	0	2	4	8	2	0	1	3
BSESE			Examination Scheme							
	Engineering	Component Theory		nent ISE			MSE		ESE	Total
	Physics			%		%		%	%	
AS101				13.5		13.5		40	67	
		La	Laboratory		26		-		7	33

Pre-requis	ite Course Codes, if any. HSC level physics								
	Course Objective: To provide the knowledge and methodology necessary for solving problems in the field of engineering								
Learning (Learning Outcomes (LO): At the End of the course students will be able to								
AS101.1	Demonstrate the conceptual knowledge of quantum mechanics, semiconductors, lasers and wave optics.								
AS101.2	Solve the problems by applying the basics concepts of physics.								
AS101.3	Explain the working principle of various LASERs and its practical applications.								
AS101.4	Develop experimental skills and practical abilities.								
	Use scientific apparatus and comprehend the importance of precision, accuracy of the experimental data.								

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS101.1	1											
AS101.2		1										
AS101.3	1											
AS101.4				1								
AS101.5				1								

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS101.1							
AS101.2							
AS101.3							
AS101.4							
AS101.5							
AS101.6							
AS101.7							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
		110	•		

Sardar Patel Institute of Technology

No. No. Title Quantum Mechanics I.1 de-Broglie hypothesis; wave packet, group velocity and phase velocity; Wave function, Physical interpretation of wave function; Heisenberg's uncertainty principle; Applications of uncertainty principle 1.2 Schrodinger's time dependent wave equation, time independent wave equation - Particle trapped in one dimensional box and Potential barrier (Tunneling) 1.2,3 2 Title Physics of Semiconductors and Semiconductor devices 2.1 Conduction in metals and semiconductors; Fermi-Dirac distribution function and Fermi level in a conductor, insulator and extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density 2.3 Formation of a P-N junction, depletion region and barrier potential; concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias 5,6 3 Title LASERS 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3,4	Hrs.
hypothesis; wave packet, group velocity and phase velocity; Wave function, Physical interpretation of wave function; Heisenberg's uncertainty principle; Applications of uncertainty principle 1.2 Schrodinger's time dependent wave equation, time independent wave equation; Application of time-independent Schrodinger equation - Particle trapped in one dimensional box and Potential barrier (Tunneling) 2 Title Physics of Semiconductors and Semiconductor devices 2.1 Conduction in metals and semiconductors; Fermi-Dirac distribution function and Fermi level in a conductor, insulator and semiconductor 2.2 Intrinsic and extrinsic semiconductors; intrinsic conductivity and extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration as a function of temperature; Effect of impurity concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density 2.3 Formation of a P-N junction, depletion region and barrier potential; concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias 2.4 P-N junction devices: LED, Zener diode, photoconductors, solar cells 3 Title LASERS 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4	
wave equation; Application of time-independent Schrodinger equation - Particle trapped in one dimensional box and Potential barrier (Tunneling) 2 Title Physics of Semiconductors and Semiconductor devices 2.1 Conduction in metals and semiconductors; Fermi-Dirac distribution function and Fermi level in a conductor, insulator and semiconductor 2.2 Intrinsic and extrinsic semiconductors; intrinsic conductivity and extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density 2.3 Formation of a P-N junction, depletion region and barrier potential; concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias 2.4 P-N junction devices: LED, Zener diode, photoconductors, solar cells 3 Title LASERS 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4	09
2.1 Conduction in metals and semiconductors; Fermi-Dirac distribution function and Fermi level in a conductor, insulator and semiconductor 2.2 Intrinsic and extrinsic semiconductors; intrinsic conductivity and extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration, electron and hole concentration; Extrinsic carrier concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density 2.3 Formation of a P-N junction, depletion region and barrier potential; concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias 2.4 P-N junction devices: LED, Zener diode, photoconductors, solar cells 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4	
distribution function and Fermi level in a conductor, insulator and semiconductor 2.2 Intrinsic and extrinsic semiconductors; intrinsic conductivity and extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration, electron and hole concentration; Extrinsic carrier concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density 2.3 Formation of a P-N junction, depletion region and barrier potential; concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias 2.4 P-N junction devices: LED, Zener diode, photoconductors, solar cells 3 Title LASERS 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4	
extrinsic conductivity; Law of mass action, charge neutrality condition; intrinsic carrier concentration, electron and hole concentration; Extrinsic carrier concentration as a function of temperature; Effect of impurity concentration and temperature on the Fermi Level; Hall Effect and its applications. Drift and Diffusion current density 2.3 Formation of a P-N junction, depletion region and barrier potential; concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias 5,6 2.4 P-N junction devices: LED, Zener diode, photoconductors, solar cells 3 Title LASERS 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4	
potential; concept of carrier current densities in p-n junction in equilibrium, forward bias and reverse bias 2.4 P-N junction devices: LED, Zener diode, photoconductors, solar cells 3 Title LASERS 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4)	13
3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4)	
 3.1 Processes - Absorption of light, spontaneous emission, stimulated emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4 	
emission; Einstein's equations, Population inversion; metastable states; pumping and pumping schemes; optical resonance cavity 3.2 Ruby and Helium-Neon laser, semiconductor laser; Applications of lasers in industry, medicine and holography (construction & 3,4)	
of lasers in industry, medicine and holography (construction & 3,4	06
reconstruction of holograms)	
4 Self Interference of light in thin films having uniform thickness, Newton's rings, Applications of interference in anti-reflecting and highly reflecting thin films. Diffraction of light, Diffraction due to single slit, double slit and diffraction grating.	05*
Total (*Not included)	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component

Sr. No.	Title of the Experiment*
1	Determination of energy band gap of a semiconductor using four probe method
2	Study of I-V characteristics of a Zener diode
3	Determination of the type of semiconductor sample, concentration of charge carriers and its mobility using Hall Effect
4	Determination of Planck's constant using photo vacuum tube
5	Measurement of ultrasonic velocity in liquid medium using ultrasonic interferometer
6	Determination of radius of curvature using Newton's Rings
7	Determination of thickness of a thin foil or wire using the interference pattern of a wedge- shaped film
8	Determination of wavelengths of a mercury source and resolving power of a plane diffraction grating
9	Study of single slit diffraction
10	Determination of grating element of a diffraction grating using a laser source
11	Determination of the numerical aperture of an optical fibre
12	Uses of a Cathode-Ray Oscilloscope

^{*}Students will perform any 10 of the above experiments

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	A Textbook of Engineering Physics	IH IAWANTH	Dr. M. N. Avadhanulu & Dr. P. G. Kshirsagar	S. Chand	2018
2	Engineering Physics	Hirct	& Poonam Tandon	Oxford University Press	2015

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Concepts of Modern Physics	Sixth	Arthur Beiser	McGraw Hill Education	2009
2	Modern Physics	Third	Serway, Moses and Moyer	Thomson Learning	2005
3	Fundamentals of Physics	Tenth	Halliday and Resnick	Wiley	2013
4	Solid State Physics	Eighth	S. O. Pillai	New Age International Publishers	2018
5	Solid State Electronic Devices	Seventh	Ben G. Streetman and Sanjay Kumar Banerjee	Pearson Education	2016
6	Lasers: Fundamentals and Applications	Second	Ghatak and Thyagarajan	Springer	2011
7	Engineering Physics	First	B. K. Pandey and S. Chaturvedi	CENGAGE	2023

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Engineering Chemistry

Course (Category) Code	Course Name	Teaching Scheme (Hrs/week) Credits Assigned									
		L	Т	P	0	E	L	T	P	Total	
BSESE	Engineering Chemistry	2	0	2	3	7	2	0	1	3	
		Examination Scheme									
		Component	ISE		M	SE		ESE		Total	
			%		%			%		%	
AS102		Theory	13.5		1	3.5		40		67	
		Laboratory	26					7		33	

Course Education Objective:

To provide necessary background of applied chemistry suited for relevant areas of engineering.

Pre-requisite Course Codes			HSC Level Chemistry					
After success	After successful completion of the course, learner will be able to							
	AS102.1		modynamic principles and laws to crucial applications like heat nderstanding)					
	AS102.2		e properties and applications of different materials like ceramics, alloys, nanomaterials, (Understanding)					
Learning Outcomes	AS102.3	alternative principles,	different sources of energy like conventional fossil fuels, e fuels, batteries, fuel cells with respect to availability, working constitution, efficiency of performance and environmental inderstanding)					
	AS102.4		wledge of electrochemistry and green chemistry in the interest ealth and environment (Application)					
	AS102.5	titrations)	of analytical techniques (potentiometric and iodometric and instruments (pHmeter, conductometer and Orsats's) for various purposes like redox reactions, neutralization etc.					
	AS102.6	Estimate k value	ey properties of lubricants like flash point, Viscosity and acid					

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
AS102.1	1											
AS102.2	1											

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

AS102.3	2							
AS102.4	2				1			
AS102.5					2			
AS102.6			1					

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS101.1							
AS101.2							
AS101.3							
AS101.4							
AS101.5							
AS101.6							
AS101.7							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
			-		

Mod ule No	Module Name	Unit No.	Topics	Ref.	Hr s
	Thermody namics	1.1	Introduction, Terminology, Concepts of Internal Energy and Thermodynamic equilibrium, Zeroth and First Law of Thermodynamics, Implications and Limitations of First law	1, 2,	1
1		1.2	Joule Thomson Effect and significance of inversion temperature, Carnot's Cycle, Carnot's theorem and related numericals, Second Law of thermodynamics	1, 2	1
		1.3	Overview of applications of thermodynamics	1,2	1
2		2.1	Introduction to polymers, Effect of heat on polymers : Glass transition temperature and melting with	2, 3,4	2

Sardar Patel Institute of Technology

	Polymers		significance;		
	-	2.2	Latest Applications: Conducting polymers, Liquid crystal polymers, Engineering Polymers,	2, 3,4,5	2
		3.1	Definition and classification of fuels, Calorific value: Definition, Gross or Higher calorific value & Net or lower calorific value, Dulong"s formula & numericals for calculations of Gross and Net calorific values.	2,3	2
3	Fuels and combustion	3.2	Knocking, Octane number, Antiknock agents, unleaded petrol, Cetane number	2,3	1
	combustion	3.3	Calculations for requirement of only oxygen and air (by weight and by volume only) for given solid & gaseous fuels.	2,3	2
		3.4	Disadvantages of fossil fuels, Alternative (Green) Fuels : Power alcohol, Biomass, Biogas, Biodiesel, Natural Gas and CNG (Description, Utility, advantages and disadvantages)	2,3	1
4	Electro- chemistry	4.1	Introduction, concept of electrode potential, electrochemical cells, Nernst Equation with applications and numericals,	2,3,4	2
		4.2	Reference Electrodes (Hydrogen electrode, calomel electrode), Glass Electrode for pH measurements, Electrochemical sensors : Working principle, construction and applications	2,3,4	2
		4.3	Faraday's Laws of electrolysis and numericals,	2,3,4	1
5	Batteries and Battery Technology	5.1	Introduction, Important terms, Lead Acid storage Cell, Nickel-Hydrogen(metal hydride), Rechargeable Lithium ion batteries, Sodium ion batteries	2,3, 6	2
3	Toomiolog,	5.2	Reserve Batteries, Fuel cells, characteristics, description, construction and working of Hydrogen-oxygen fuel cells	2,3, 6	2
6	Green Chemistry	6.1	12 principles of green chemistry with examples, Numericals on Atom Economy, Green Solvents (Water, Supercritical Fluids),	2,3	3
	Engineering materials	7.1	Eutectic mixtures and soft solders Advanced Ceramic materials and cermets and applications Carbon nanomaterials : Fullerenes and Carbon nanotubes, Structure, Properties and applications	2,3,4	1

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

7		7.2	Semiconductors, Stoichiometric and defect semiconductors.	2,3,4	1
		7.3	Superconductors, perovskite structure and 1:2:3 compound YBa ₂ Cu ₃ O _{7-y} , properties and applications	2,3,4	1
			Total		28
	Self Learning		Challenges pertaining to use of Li ion batteries, Different types of fuel cells, Calculation of hardness of water and COD of wastewater		

Laboratory Component

Sr. NO	Title Of the Experiment
1	Determination of total hardness of water sample
2	Removal of hardness using ion exchange column
3	Determination of Viscosity of oil by Redwood Viscometer
4	To determine flash point of a lubricating oil
5	Analysis of flue gas for its composition (by Orsat's
	Apparatus)
6	Estimation of acid value of lubricant
7	Determination of amount of strong acid present in a
	solution using a conductometer
8	Determination of strength of acid using a pH meter
9	Estimation of Copper in brass by Iodometric Titration
10	Potentiometric titration (acid-base, redox)
11	Estimation of Iron in plain Carbon steel
12	Determination of COD of wastewater sample

References:

- [1] Peter Atkins, Physical Chemistry, XIth ed, Oxford, United Kingdom, Oxford University Press, 2017
- [2] P. C. Jain & M. Jain, *Engineering Chemistry*, XVIth ed , New Delhi, India:Dhanpat Rai Publishing Co. (P) Ltd., 2014
- [3] S. S. Dara & S. S. Umare, *A Textbook of Engineering Chemistry*, XIIth ed., New Delhi, India: S. Chand & Co. Ltd., 2013
- [4] S. Chawla, *A Textbook of Engineering Chemistry*, IIIrd ed., Delhi, India: Dhanpat Rai & Co. (Pvt.) Ltd., 2015
- [5] S. Agarwal, *Engineering Chemistry Fundamentals and Applications*, Ist ed, Delhi, India: Cambridge Univ. Press., 2015

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

[6] Dell, Ronald M Rand, David A J, 'Understanding Batteries', Royal Society of Chemistry, (2001).

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Biology for Engineers

Course (Category) Code	Course Name	Teaching Scheme (Hrs./week) Credits Assigned							signed	
Code		L	T	P	0	E	L	T	P	Total
(BSESE)	Biology for	3	0	0	4	7	3	0	0	3
	Engineers				Exa	minatio	on Scheme (%)			
		Com	ponent		ISE		MSE		ESE	Total
AS103	1	Theory			20		20		60	100
		Labo	oratory		0				0	0

Pre-requisite Course Codes, if any. 12 th Course Objective: To motivate the students to develop a system with a multidisciplinary approach using basic biological concepts and Artificial Intelligence. Learners will gain a comprehensive understanding of how AI is revolutionizing healthcare and biomedical research.					
Learning (Outcomes (LO): At the End of the course students will be able to				
AS103.1	Understand the basic biomolecules and their engineering applications.				
AS103.2	Grasp how biological systems can be re-designed as substitute products for natural systems.				
AS103.3	Acquire the interdisciplinary vision of biological engineering				
AS103.4	Explore the use of AI in medical imaging for diagnosis and treatment planning				
AS103.5	Understand AI-driven approaches for disease diagnosis, prediction, and personalized medicine with ethical, legal and social implications.				

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P01 1	P012
AS103.1	2											
AS103.2	3											
AS103.3	3											
AS103.4	2											

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

AS103.5	2		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember √	Understand $\sqrt{}$	Apply	Analyze	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	1	Biomolecules and their applications	1,2	
	1.1	Carbohydrates (cellulose-based water filters, PHA and PLA as bioplastics), Nucleic acids (DNA Vaccine for Rabies and RNA vaccines for Covid19, Forensics – DNA fingerprinting),		8
	1.2	Proteins (Proteins as food – whey protein and meat analogs, Plant based proteins), lipids (biodiesel, cleaning agents/detergents), Enzymes (glucose-oxidase in biosensors, alginolytic enzyme in bio-bleaching).		
2	2	Cardiovascular and Nervous System	1,2	10
	2.1	Anatomy of the heart; Heart valves, systemic and pulmonary circulation; Conduction system of the heart; Cardiac action potential, electrocardiogram (ECG); Cardiac cycle; Cardiac output; Blood pressure.		
	2.2	Divisions of the nervous system (central and peripheral nervous system); Structure and functions of the brain and spinal cord; Reflex actions and reflex arc; Functions of sympathetic and parasympathetic nervous system; Nerve action potential and nerve conduction.		
3	3	Human Organ Systems and Bio-Designs	1,2	10
	3.1	Brain as a CPU system, signal transmission, EEG, Robotic arms for prosthetics. Engineering solutions for Parkinson's disease).		
	3.2	Eye as a Camera system (architecture of rod and cone cells, optical corrections, cataract, lens materials, bionic eye).		
	3.3	Heart as a pump system (architecture, electrical signaling - ECG monitoring and heart related issues, reasons for blockages of blood vessels, design of stents, pacemakers, defibrillators).		
4	4	AI for Biomedical Applications	1	14

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	4.1	Introduction to AI in Biomedical Applications: Overview of artificial intelligence and machine learning, Challenges and opportunities in applying AI to biomedicine, Ethical considerations in AI-driven healthcare Medical Imaging and AI: Basics of medical imaging modalities, Image preprocessing and feature extraction, AI applications in medical image analysis and interpretation		
	4.3	Personalized Medicine and Precision Health: Concept of personalized medicine, AI-driven approaches to patient stratification, Precision health initiatives and challenges	2	
	4.4	Genomics and Bioinformatics: Basics of genomics and next- generation sequencing, AI-driven analysis of genomic data, Precision genomics and its applications in healthcare		
	4.5	Regulatory and Ethical Considerations: Regulatory landscape for AI in healthcare, Ethical and privacy considerations in AI- driven healthcare, Bias and fairness in AI algorithms		
5	Self Study	Trends in Bioengineering: Bioprinting techniques and materials, 3D printing of ear, bone, and skin. 3D printed foods. Electrical tongue and electrical nose in food science, DNA origami and Biocomputing, Bioimaging and Artificial Intelligence for disease diagnosis. Self-healing Bio concrete (based on bacillus spores, calcium lactate nutrients and biomineralization processes) and Bioremediation and Biomining via microbial surface adsorption (removal of heavy metals like Lead, Cadmium, Mercury, Arsenic).	1,2,3	6*
	_	Total (6*Not inc	luded)	42

ISE Component: Presentations on the following topics

	Biology for Engineers
Sr. No	
1	Signal Conditioning for ECG
2	Signal Conditioning for EEG
3	Study of Robotic arm for prosthetics
4	Study of Parkinson's disease
5	Utilize Python libraries such as OpenCV and TensorFlow to preprocess medical images and develop a deep learning model for automated diagnosis or classification of medical images (e.g., X-rays, MRI scans).
6	Collect and preprocess relevant clinical data (e.g., patient demographics, lab results, symptoms and implement predictive analytics algorithms to forecast disease progression or patient outcomes.
7	Design personalized treatment plans based on genetic profiles using decision support systems

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

8	Apply machine learning techniques (e.g., random forests, deep learning) to predict gene function or classify genomic variants [Access genomic datasets from repositories such as the Genomic Data Commons (GDC) or The Cancer Genome Atlas (TCGA).]
9	Develop predictive models for hospital readmission or patient risk stratification using clinical data.
10	A case studies involving ethical dilemmas in AI-driven healthcare (e.g., patient privacy, algorithmic bias). To study and analyze regulatory frameworks (e.g., HIPAA, GDPR) governing the use of AI in healthcare and Propose strategies for addressing ethical concerns and ensuring fairness and transparency in AI algorithms.

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Human Physiology	16th	Stuart Fox, Krista Rompolski	McGraw-Hill	2022
2	Biology for Engineers	3 rd	Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K.	Tata McGraw Hill	2012
3	Artificial Intelligence in Medicine		Adam Bohr and Gopalakrishnan Venkitaraman	Academic Press; 1st edition (21 June 2020)	2020

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Biology for Engineers		Arthur T. Johnson	CRC Press, Taylor and Francis	2011
2	Biology for Engineers		Danial Schodek	MIT Press	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Engineering Graphics

Course (Category)	Course Name	,	Teaching Scheme (Hrs./week)						Credits Assigned			
Code		${f L}$	T	P	0	E	L	T	P	Total		
	Engineering Graphics	1	0	4	2	7	0	1	2	3		
BSESEC		Examination Scheme										
DSESEC		Comp	onent		ISE %		MSE %		SE %	Total %		
A C105		Theory			13		0		20	33		
AS105		Labor		40		_		27	67			

Pre-requi	site Course Codes, if any.	10+2 Basics					
	Course Objective: To develop technical drawing and visualization skills using instrumental drawing and soft tool, required for design and modeling, in Engineering Applications and Solutions.						
Learning	Outcomes (LO): At the End	of the course students will be able to					
AS105.1	Construct basic engineering	curves.					
AS105.2	Draw projection of points an	d lines.					
AS105.3	Draw projection of regular so	olids inclined to both the reference planes.					
AS105.4 Read the 3-dimensional view and draw the orthographic and sectional orthographic projections.							
AS105.5 Read the orthographic projection and draw an isometric view.							
AS105.6	Draw the development of lat	eral surfaces of solids.					

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS105.1	3	3										3
AS105.2	3	3										3
AS105.3	3	3										3
AS105.4	3	3										3
AS105.5	3	3										3
AS105.6	3	3										3

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.	
1	Unit1	Introduction to Engineering Drawing and Construction of engineering curves	1,2	4	
	1.1	Types of Lines, Dimensioning Systems as per IS conventions. First angle method of projection only			
	1.2	Basic construction of Cycloid and Involutes.			
2	Unit2	Projection of Points and Lines: -	1,2	5	
	2.1	Projection of points in all four quadrants			
	2.2	Projection of lines parallel to one principal reference plane.			
	2.3	Lines inclined to both the Reference Planes (Excluding Traces of lines).			
3	Unit3	Projection of solid (Regular solids like Prism, Pyramid, Cylinder, Tetrahedron, Hexahedron and Cone only)	1,2	5	
	3.1	Projection of solid resting on plane (Single step projection)			
	3.2	Projection of solid such that base inclined to one reference plane (Two step projection)			
	3.3	Projection of solid such that base inclined to both reference planes (Three step projection/problem) (Exclude Spheres, Composite, Hollow solids and frustum of solids)			
4	Unit4	Orthographic Projection	1	Lab	
	4.1	Orthographic views of a simple machine part as per the first angle method of projection recommended by I.S.		session (4)	
	4.2	Full Sectional views of the Simple Machine parts.			
5	Unit5	Isometric visualization	2	Lab	
	5.1	Isometric view (Natural scale only)	session (2)		
6	Unit6	Development of lateral surface of solids		Lab	
	6.1	Development of lateral surface of solids (Exclude DLS of a solid with a hole in it and Reverse Development)	session (2)		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

7	Self	1.2 Construction of Engineering curves like ellipse, parabola,	1,2,3	6*
	Stud	hyperbola, helix, other types of cycloid etc. by using different		
	y	method of construction.		
		2.1 Solve more practice examples of orthographic views. Draw		
		different views of a machine part/any object using third angle		
		method of projection. (Axonometric view, oblique view,		
		perspective etc.)		
		2.2 Half sectional orthographic views.		
		3.1 Projection of lines with traces, application-based problems on		
		Projection of lines		
		4.1 Projection of section of solid with cutting planes.		
		5.1 Development of lateral surface of solids with openings, reverse		
		development of solid.		
	<u> </u>	Total (*Not inc	cluded)	14

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Engineering AutoCAD Laboratory
1	Introduction to Auto-CAD: -Basic Drawing and Editing Commands. Knowledge of setting up layers, Dimensioning, Hatching, plotting and Printing. Auto-Cad Practice sheet-1 (Two Examples)
2	Auto-Cad Practice sheet-2 (Two Examples)
3	Introduction to Orthographic projections sheet-1 (Two Problems)
4	Orthographic projections sheet-2 (Two Problems)
5	Introduction to Sectional Orthographic projections sheet-1 (Two Problems)
6	Sectional Orthographic projections sheet-2 (Two Problems)
7	Introduction to Isometric Projection/View: - Isometric View/Drawing of blocks of plain and cylindrical surfaces using plain/natural scale only. (Exclude Spherical surfaces). Isometric Projection/View sheet-1 (Two Problems)
8	Isometric Projection/View sheet-2 (Two Problems)
9	Draw development of lateral surface of solids with simple sections DLS sheet-1 (Prism and Cylinder)
10	DLS sheet-2 (Pyramid and Cone)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Engineering Drawing	53 rd	N D Bhatt	Charotar	2016
2	Engineering Drawing	3 rd	Dhananjay A Jolhe	Tata McGraw Hill	2011

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	AutoCAD 2017		Sham Tickoo	DreamTech Press, Delhi	2017
2	Engineering Drawing and Graphics	Fifth	K Venugopal	New Age International	2011

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Engineering Mechanics

Course (Category)	Course Name	Teachi	Teaching Scheme (Hrs./week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
		2	0	2	4	8	2	0	1	3	
BSESE		Examination Scheme									
DSESE	Engineering	Component			ISE		MSE		ESE	Total	
	Mechanics		_			% %			%	%	
A C104		Tl	Theory				13.5		40	67	
AS104		Lab	oratory	y	26				7	33	

Pre-requisit	te Course Codes, if any. 10+2 Basics
Course Obj	ective: To provide knowledge of force analysis methods required in engineering
applications	and solutions. Also, to develop analytical and computational ability.
Learning O	utcomes (LO):At the End of the course students will be able to
AS104.1	Draw free body diagram and determine reactive forces using conditions of equilibrium
	and Lami's theorem
AS104.2	Determine coefficient of friction for various contact surfaces
AS104.3	Analyze the three-dimensional system of space forces.
AS104.4	Analyze the kinematics of particles and obtain the various parameters of motion.
AS104.5	Determine Instantaneous center of rotation (ICR).
AS104.6	Design and conduct an experiment to demonstrate principles of statics and dynamics

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO2	PO3	PO4	PO	PO6	PO7	PO	PO9	PO1	PO11	PO12
	1				5			8		0		
AS104.1	3	3							3			
AS104.2	3	3							3			
AS104.3	3	3							3			
AS104.4	3	3							3			
AS104.5	3	3							3			
AS104.6	3	3							3			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
AS104.1						
AS104.2						
AS104.3						
AS104.4						
AS104.5						
AS104.6						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
	CHACIBULIA	1-PP-J	111111111111111111111111111111111111111		Oreate

Theory Component

Modul e No.	Unit No.	Topics	Ref	Hrs				
1	Unit1	Equilibrium of forces						
	1.1	Equilibrant force, conditions of equilibrium for concurrent forces, parallel forces and general force system, equilibrium of connected bodies, Lami's theorem.	1, 3	8				
	1.2	Types of supports, types of loads, Beams, Determination of reactions at supports for various types of loads on beams	3					
2	Unit2	Friction						
	2.1	Introduction to Laws of friction, Cone of friction, Equilibrium of bodies on inclined plane, Application to problems involving wedges, ladders.	1, 2	4				
3	Unit3	Forces in space		5				
	3.1	Rectangular Components of Forces in Space, Resultant of Space forces, Moment of a Force about a point, axis and line. Equilibrium of a particle in space.	1					
4	Unit4	Kinematics of Particle		8				
	4.1							
5	Unit5	Kinematics of Rigid Bodies		3				
	5.1	Instantaneous center of rotation for the velocity of bodies in plane motion, (up to 2 linkage mechanism)	3					
6	Self	1. Applications of resultant of forces, concept of couple and moments,	1,	6*				
	Stud	2. Centroid and center of gravity, analysis of trusses.	2,					
	y	3. Kinetics of rigid body, work energy principle.4. Principle of Law of Conservation of momentum, Impact and collision.						
Total (*Not included)								

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component

Sr. No	Title of the Experiment
1	Draw the force polygon and determine the equilibrant force for a concurrent coplanar force
	system.
2	Use the conditions of equilibrium for the parallel force system and determine the support
	reactions.
3	Apply the principle of moment for equilibrium of levers.
4	Determine the coefficient of friction for glass slab and a metal plate on an inclined plane.
5	Determine the axial forces using Lami's theorem for Jib crane apparatus.
6	Use the conditions of equilibrium for a non-concurrent non-parallel force system and draw
	the force polygon.
7	Measure the acceleration due to gravity with the help of simple pendulum apparatus.
8	Determine the range of projectile and the time of flight for the projectile motion.
9	Verify the law of conservation of momentum and determine the coefficient of restitution
	for collision
10	(Plot the motion of the projectile using an air-cushion table apparatus.) A small project
	based on the Engineering Mechanics concept.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Yea
					r
	Vector Mechanics for Engineers	Nineth	Beer and	McGraw Hill	2010
1	statics and dynamics		Johnston		
2	Engineering Mechanics	Fifth	Bhavikatti S and	New Age	2009
2			Rajsekharappa	International	
	Engineering Mechanics Statics and	Fourteenth	A K Tayal	Umesh	2012
3	Dynamics		-	Publication,	
	-			Delhi	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Engineering Mechanic: Statics and Dynamics,	Fifth	E.W. Nelson, C.L. Best, W.G. McLean,	McGraw Hill	1998
2	Singer's Engineering Mechanics Statics and Dynamics	Third	Vijaya Kumar Reddy. K. and Suresh Kumar. J	BS Publication	2012

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Material Science and Engineering

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned						
Code		L	T	P	0	E	L	T	P	Total			
	Material Science and Engineering	2	0	2	4	08	3	0	0	3			
BSESE]	Exam	inatior	Schei	Scheme					
		Comp	onent	ISE	(%)	MSE	2 (%)	Total					
		Theory		2	20	2	0	6	60	100			
AS108		Laboratory			-	-	-		-	-			

Pre-requi	site Course Codes, if any. 12th Physics and Chemistry							
Course O	bjective: To make learners understand the fundamental physical origins of material							
behavior	behavior to optimize the properties for various engineering materials.							
Learning Outcomes (LO): At the end of the course students will be able to								
AS108.1	Demonstrate the knowledge of the basics of crystallography.							
AS108.2	Visualize Planes and directions using Miller Indices.							
AS108.3	Classify the various magnetic materials and identify the magnetic materials for various engineering applications.							
AS108.4	Comprehend the basics of physics and chemistry on the nanometer scale and applications							
	of nano materials.							
AS108.5	Comprehend the basic physical properties of smart materials with various engineering							
	applications.							
AS108.6	Comprehend the use of various analytical techniques to characterize various materials.							

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO1 2
AS108.1	1											
AS108.2	1											
AS108.3	1											
AS108.4	1											
AS108.5	1											
AS108.6	1											

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
AS108.1						
AS108.2						
AS108.3						
AS108.4						
AS108.5						
AS108.6						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand ✓	Apply ✓	Analyze	Evaluate	Create	
						ı

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Crystallography		10
	1.1	Introduction, types of solids, space lattice, basis, unit cell and its characterization, lattice parameters, Bravais space lattices, seven crystal systems	1& 2	
	1.2	Miller Indices of planes and directions, Interplanar spacing in cubic system		
	1.3	X-rays, Bragg's law, Bragg's X-ray spectrometer and determination of crystal structure		
	1.4	Crystal imperfections: Point and Line defects		
2	Title	Magnetic properties of materials	2,3	8
	2.1	Introduction, magnetic moment of an atom, useful magnetic parameters	&4	
	2.2	Classification of magnetic materials		
	2.3	Hysteresis, soft and hard magnetic materials and their applications		
3	Title	Nanomaterials and their applications	4	6
	3.1	Introduction, types of nanoparticles (carbon, metals, organic, and composites)		
	3.2	Molecular self assemblies, and Applications		
4	Title	Modern, Smart and Intelligent Engineering Materials	2,4	10
	4.1	Introduction, distinguish features of smart materials, Types of smart materials and their various engineering applications		
	4.2	Dielectric materials: polarization, temperature and frequency effects, electric breakdown, ferroelectric materials and its various applications		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	4.3	Metallic glasses and their various engineering applications		
	4.4	Wide-bandgap (WBG) semiconductors: Silicon Carbide, Gallium		
		nitride. Applications of WBG materials		
5	Title	Materials' Characterization Techniques	4	8
	5.1	UV and visible spectroscopy Fluorescence spectroscopy		
	5.2	X-ray photo luminescence spectroscopy, Transmission Electron		
		Microscopy, Scanning Electron Microscopy		
	5.3	Raman effect and Raman spectroscopy		
6	Self	Superconductivity, Type I and Type II superconductors, Meissener	1,2	06
	Stud	effect, High temperature superconductors, various applications of	& 4	
	y	superconductors.		
		r	Γotal	42

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Electrical Engineering	tenth	A.J. Dekker	Prentice- Hall	2008
	Materials			India	
2	Nanotechnology: Principles	third	Sulbha K.	Springer	2015
	and practices		Kulkarni		

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Solid State Physics	tenth	S.O.Pillai	New Age	2022
				International	
2.	Materials Science and	sixth	V. Raghavan	PHI	2004
	Engineering				
3	Fundamentals of	sixth	William	John Wiley &	2021
	Materials science and		Callister and	Sons.	
	engineering; an		Jr. David		
	integrated approach		Rethwisch		
4	Engineering Physics	second	B.K. Pandey	Cengage	2022
			and S. Chatur		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Problem Solving using Imperative Programming SEM-I

Course (CategoryCode)	Course Name	Teaching Scheme (Hrs/week)						Credits Assigned		
		L	T	P	О	E	L	T	P	Total
		0	1	4	4	8	0	1	2	3
(ESC)	Problem Solving using	Examination Scheme				·				
	Imperative	· Kombonen in				N	ISE	E	SE	Total
CE101	Programming Laboratory	Theory		-		-		-	-	
CEIUI		Labora	tory		100	-	-	10	00	200

Pre-requisite	Pre-requisite Course Codes, if any.						
Course Obje	ctive: To develop problem solving skills using imperative programming.						
Learning Ou	tcomes: At the End of the course students will be able to						
	Understand and conceptualize the problem-solving aspects using various programming paradigms.						
CE101.2	Solve real world problems using imperative programming approaches.						
CE101.3	Apply control structures for solving real world problems.						
CE101.4	Solve problems using Arrays and Text processing.						
CE101.5	Develop modular code for a given problem.						
CE101.6	Develop a solution to real world problems using Structures and Unions						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CE101.1	1											
CE101.2	2	2										
CE101.3	2	2										
CE101.4	2	2										
CE101.5	2	2										
CE101.6	2	2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CE101.1							
CE101.2							
CE101.3							
CE101.4							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

CE101.5				
CE101.6				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Module No.	Unit No.	Topics	Ref.
INU.	Title	Introduction to Problem Solving and Programming Paradigms	
1	1.1	What is a Problem, Characteristics of good Program, Overview of Programming Paradigms – Declarative and Imperative, Problemsolving using Algorithm and Flowcharts	3,4
	Title	Basic Elements of Computer Programming and Control flow	
2	2.1	Variables, keywords, Data types, Operators: Arithmetic, Relational and Logical, Assignment, Unary, Conditional, Ternary, Bitwise, Expression, Statements.	1,2
	2.2	Branching Structures: if statement, if-else statement, multi-way decision, switch statement, continue statement, break statement Iterative Structures: while, do-while, for, nested loops	1,2
	Title	Problem Solving using Array Techniques	
3	3.1	Introduction to Arrays: Declaration, Definition, accessing array elements, one-dimensional array, two-dimensional array, array of characters, Solving using Arrays like Array Order Reversal, Array Counting or Histogramming.	1,2
	3.2	Strings and Operations on Strings.	1,2,4
	Title	Problem Solving using Modular Approach	
4	4.1	Defining a Function, accessing a Function, Function Prototype, Passing Arguments to a Function, call by value, pointers and call by reference, Arrays and pointers.	
	4.2	Recursion	1,2,4
	Title	Structures and Unions	
5	5.1	Structures and Union: Declaration, Initialization, structure within structure, Array of Structure, Operation on structures, Concept of Union, Difference between structure and union, Pointer to a structure.	1,2
6	Self- Study	File handling: Types of Files, File operation-opening, Closing, Creating, Reading, Processing File, Command line arguments, Dynamic Memory Allocation	1,2,4

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component (Minimum 10 Laboratory experiments are expected) Note: All problems should be implemented using C language.

Sr. No.	Title of the Experiment
1	Use the basics of C language (formatted input/output statements, operators and
2	expressions) Apply various selection control structures to solve given problems.
2	Apply various iterative control structures to solve given problems.
4	
4	Apply the concept of functions to incorporate modularity.
5	Demonstrate the use of arrays to solve a given problem. (one-dimensional/two-
	dimensional)
6	Apply the concept of recursion to solve a given problem.
7	Implement various text processing problems.
8	Apply the concepts of structures/union to solve a given problem.
9	Demonstrate the use of pointers to solve a given problem.
10	Implement various operations on files to solve a given problem.

Textbooks

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Programming with C	Fourth	Byron Gottfried	McGraw Hill (Schaum's outline series)	2018
2	The C programming Language	Second	Kernighan , Ritchie	Pearson	2015
3	Foundations of Programming Languages	Second	Kent D. Lee	Springer	2017
1 4	How to Solve it by Computer	First	R. G. Dromey	Prentice Hall India	1998

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Let Us C	Sixteenth	Yashavant Kanetkar	BPB	2017
2	Programming Language Concepts	Third	Carlo Ghezi, Mehdi Jazayeri	John Wiley & Sons	2008
3	Computer Programming in C	Second	V. Rajaraman & Neeharika Adabala	PHI Learning, Eastern Economy Edition,	2014

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Problem Solving using Object Oriented Programming SEM-II

Course		T	eachin (Hrs/	_			Credits Assigned						
(Category) Code	Course Name	L	Т	P	0	E	L	T	P	Total			
	Problem Solving using Object Oriented	0	1	4	4	8	0	1	2	3			
SEC			•	Ex	amina	atio	n Sch	eme	•	,			
		Com	ponen	t	ISE		MSE	E	ESE Total				
CE102	Programming	Th	eory					-	-				
		Labo	oratory	7	80			2	0	100			

Pre-requisite Course Codes, if any.	Problem Solving using Imperative Programming						
Course Objective: To learn problem solving using Object-Oriented programming paradigm							
Learning Outcomes (LO): At the End of the course students will be able to							
CE102.1	Apply concepts of object-oriented programming using classes and objects						
CE102.2	Apply Inheritance for a given scenario						
CE102.3	Solve the given problems using concept of polymorphism						
CE102.4	Develop efficient programs abstraction and exception handling to.						

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO	PO1	PO1	PO12								
	1	2	3	4	5	6	7	8	9	0	1	
CE102.	3	2			3							2
CE102.	3	2			3							2
CE102.	3	2			3							2
CE102.	3	2			3							2

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CE102.1							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

CE102.2				
CE102.3				
CE102.4				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply [Analyze	Evaluate	Create

Theory (This course content delivery will be in Java. Course Contents to be taken care accordingly)

Module No.	Unit No.	Topics	Ref.	Hrs.
1		Introduction and Encapsulation		
	1.1	Introduction to Object Oriented Programming, Procedural	1,2	4
		versus Object Oriented Programming, Principles, Benefits		
		and applications of Object-Oriented Programming.		
	1.2	Encapsulation: Problem solving with Objects and Classes		
	1.3	static data members and methods, constructors and their types. Strings, Arrays		
2		Inheritance		3
	2.1	Concept of Inheritance, parent class, derived class, this and super keyword	1,2	
	2.2	Types of inheritance: single, multiple, multilevel, hierarchical, hybrid		
3		Polymorphism		3
	3.1	Static Polymorphism: Method overloading and Constructor overloading	1,2	
	3.2	Dynamic Polymorphism: Method overriding		
	3.3	Data conversion		
4		Abstraction		2
	4.1	Abstraction: abstract class, interface	1,2	
5		Exception Handling		2
	5.1	try, throw, and catch exceptions	1,2	
	5.2	Function exception declaration		
6	Self	File Handling, Multithreading, Packages, Collection	1,2	5*
	Study	Framework, Swings, Aggregation and Composition		
			Total	14+ 5*

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory

Sr. No	Title of the Experiment
1	Program on Encapsulation: Write a program to demonstrate classes and objects
2	Program on Encapsulation: Write a program to demonstrate constructor
3	Program on Polymorphism: Implement a Program to demonstrate method overloading,
4	Program on Polymorphism: Implement a Program to demonstrate constructor overloading
5	Program on Polymorphism: Implement a Program to demonstrate method overriding
6	Program on Inheritance: Implement a Program to demonstrate single level Inheritance
7	Program on Inheritance: Implement a Program to demonstrate multilevel Inheritance
8	Program on Abstraction: Implement a Program to demonstrate multiple Inheritance/interface
9	Program on Abstraction: Implement a Program to demonstrate Abstraction using abstract class
10	Program on abstraction: Implement a Program to demonstrate multithreading

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Java -The Complete Reference	10 th	Herbert Schildt	Tata McGraw- Hill	2017
2.	Java Programming From the Ground Up	1 st	Ralph Bravaco,Shai Simoson	Tata McGraw- Hill	2009

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	An introduction to Programming and Object Oriented Design using Java	3 rd	Jaime Nino, Frederick A. Hosch	Wiley Student Edition	2010
2.	Head First Java	3rd	Kathy Sierra & Bert Bates	O'Reilly	2022

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Digital Systems

Course(Category) Code	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
	Digital Systems	3	0	2	5	10	3	0	1	4
(DCEC)		Examination Scheme								
(BSES)		Component		Component ISE		I	MSE	E	SE	Total
					%		%		%	%
EC101		The	eory		15		15	4	45	75
			Laboratory		15			-	10	25

Pre-requisi	ite Course Codes, if any.						
Course Ob	jective:						
Learning Outcomes (LO):At the End of the course students will be able to							
EC101.1 Explain various logic gates, SOP, POS forms and their minimization with k- map for given combinational circuits.							
EC101.2	Construct combinational circuits using given MSI devices.						
EC101.3	Apply the knowledge of flip-flops and MSI to design sequential circuits						
EC101.4	Compare the logic families based on their characteristics						
EC101.5	Comprehend the architectural features of 8085 with basic assembly language programming						

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
EC101.1	3	2	1									
EC101.2	3	2	1									
EC101.3	3	2	1									
EC101.4	3	2	1									
EC101.5	3	2	1									

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC101.1							
EC101.2							
EC101.3							
EC101.4							
EC101.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Combinational Circuits		11
	1.1	Logic Gates: Basic gates, Universal gates, Sum of products and	1,4	
		products of sum, minimization with Karnaugh Map (up to four		
		variables), Quine Mc'Clusky method and realization.		
	1.2	Combinational Circuits using basic gates as well as MSI	1,4	
		devices: Half adder, Full adder, Half Subtractor, Full		
		Subtractor, Multiplexer, Demultiplexer, Decoder, Comparator		
2	Title	Sequential Circuits		
	2.1	Sequential Logic: Latches and Flip-Flops. Conversions of Flip-	1,4	11
		Flops.		
	2.2	Counters: Asynchronous Counters, Synchronous Counters,	1,4	
		Up Down Counters, Mod Counters, Ring and Twisted Ring		
		Counters, Shift Registers, Universal Shift Register		
	2.3	MSI counters (IC 7490, IC 74160, IC 74163, IC 74169), MSI	2,5	
		Shift registers (IC 74194) and their applications		
3	Title	Clocked Synchronous Machines		
	3.1	Mealy and Moore Machines, Clocked synchronous state machine	2,5	05
		analysis, State reduction techniques.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

4	Title	Logic Families		05		
	4.1	Types of logic families (TTL and CMOS), characteristic parameters (propagation delays, power dissipation, Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL NAND.	1,4			
5	Title	Introduction to Microprocessors		10		
	5.1	Evolution of computers and Microprocessors	3			
	5.2 Essential components of a conventional Central Processing Unit (CPU)					
	5.3	Architecture of 8-bit microprocessor 8085	3			
	5.4	Basic instruction set with its addressing modes and concepts of Instruction cycle, Machine cycle and T states. Elementary programming in assembly language.	3			
	5.5	Elements of I/O data transfer with the concept of interrupts	3			
6	Self Stud y	Concepts of PROM, PAL and PLA. Timing Considerations and Metastability in Flip-Flops. Clocked synchronous state machine design. Interfacing CMOS to TTL and TTL to CMOS. Concepts of peripherals and memory with its interfacing with 8085 microprocessor				
	-1	1 0000 Interoprocessor	Total	42		

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment							
1	To implement the combinational logic for given function using basic gates/MSI ICs.							
	a. To study and verify the truth table of logic gates							
	a. To study and verify the truth table of logic gatesb. To study the universal NAND and NOR gate							
	c. To study the working of half adder, full adder, half subtractor, Full subtractor							
	along with truth table							
2	To implement TTL and CMOS logic family							
	a. To study TTL NAND gate (BJT implementation).							
	b. To study CMOS NAND gate							
	c. To study interfacing of the TTL /CMOS							
3	To implement 4-bit, 5-bit and 8 bit comparator using given MSI							
4	To design implement gate level multiplexers and MSI multiplexers							
5	To design and implement gate level and MSI circuits of flip-flops							
6	To design counters							
	 a. To design a MOD4 synchronous up/down counter b. To study IC 7490 – Asynchronous Decade Counter 							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

7	To synchronous counters, synchronous counters and shift register using given MSI.
	 a. To study IC 74160 as Synchronous Decade Counter and Mod 6 counter b. To study IC 74163 as Synchronous MOD 16 Counter and Mod 10 counter c. To verify the truth table of IC 74194 as Universal Shift Register and implement Ring and Twisted Ring Counter.
8	To perform basic arithmetic operations through assembly language program in 8085
9	To simulate COPY and PASTE operation through 8085 assembly program
10	To write a program to add N elements stored in an array of 8 bit numbers (8085)

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Modern Digital Electronics	Fourth	R. P. Jain	Tata McGraw	2009
	-	Edition		Hill	
2	Digital Design Principles And	Third	John F.	Pearson	2001
	Practices	Edition	Wakerly	Education	
3	Microprocessor Architecture,	Sixth	Ramesh S.	Penram	2013
	Programming, and	Edition	Gaonkar	International	
	Applications with the 8085				

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
4	Digital Design	Fourth	Morris Mano	Pearson	2008
		Edition		Education	
5	Fundamentals of	Second	Stephen Brown and	McGraw Hill	2006
	digital logic design	Edition	Zvonko Vranesic		
	with VHDL				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Basic Electrical Engineering

Course (Category)	Course Name		Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
		3	0	2	6	11	3	0	1	4	
(BSES)	Basic Electrical Engineering	Examination S					cheme				
		Compone		ISE		MSE		ESE	Total		
					%		%		%	%	
EC102		Theory		1	15		15		45	75	
EC102		Laboratory		1	15				10	25	

Pre-requi	site Course Codes, if any.	Basic concepts of electric charge, current, voltage and Power				
Course O	bjective: To impart a basic kn	owledge of electrical quantities, Circuits and components.				
Learning	Outcomes (LO): At the End	of the course students will be able to				
EC101.1	Compute various electrical que simplification techniques and	uantities of given dc circuit using circuit various network theorems.				
EC101.2		ferent terms and concepts in AC Circuits at fundamental n to basics of effects of harmonics in the waveforms				
EC101.3	To study the working princip	les of electrical machines and their applications				
EC101.4	To expose the students the fu Modulation based Power Cor	ndamental concepts in Controllable Switch and oversion				
EC101.5	To study Electrical Parameter for a specific application	rs of the Batteries and their selection and design criteria				

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC101.1	3	3										
EC101.2	3	3										
EC101.3	3	3										
EC101.4	3	3										
EC101.5	3	1										

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC101.1							
EC101.2							
EC101.3							
EC101.4							
EC101.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
	C 1100 C 10 C 10 C 10 C 10 C 10 C 10 C	r-rr-j			0-000

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Theory Component

Title DC Circuits 1,2 12 12 12 12 12 12 1	Module No.	Unit No.	Topics	Ref.	Hrs (Theory +Tut)
sources, Equivalent resistance of circuits, Simplification using delta-star and star-delta transformation. 1.2 Kirchoff's current and voltage laws, Analysis of simple circuits with dc excitation. Mesh analysis, Superposition, Thevenin, Norton and Maximum Power Transfer Theorems 1.3 Time-domain analysis of first-order DC Transients in RL and RC circuits. 2 Title AC Circuits 1,2 12 2.1 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Harmonics, Total Harmonic Distortion, Power supplied by Harmonic voltages and currents, Power factor in case of non-sinusoidal waveforms. 2.2 AC Analysis of series and parallel RLC Circuits with Resonance, Concept of Bandwidth and Q-factor, 2.3. Three-phase balanced circuits, voltage and current relations in star and delta connections. 3 Title Electromagnetic and Electro-Mechanical Energy Converters 3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.2 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 1,2 6 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control	1	Title	DC Circuits	1,2	
with dc excitation. Mesh analysis, Superposition, Thevenin, Norton and Maximum Power Transfer Theorems 1.3 Time-domain analysis of first-order DC Transients in RL and RC circuits. 2 Title AC Circuits 1.2 12 2.1 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Harmonics, Total Harmonic Distortion, Power supplied by Harmonic voltages and currents, Power factor in case of non-sinusoidal waveforms. 2.2 AC Analysis of series and parallel RLC Circuits with Resonance, Concept of Bandwidth and Q-factor, 2.3. Three-phase balanced circuits, voltage and current relations in star and delta connections. 3 Title Electromagnetic and Electro-Mechanical Energy Converters 1,2 9 3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 1,2 6 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		1.1	sources, Equivalent resistance of circuits, Simplification using delta-star and		12
zircuits. 2 Title AC Circuits 2.1 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Harmonics, Total Harmonic Distortion, Power supplied by Harmonic voltages and currents, Power factor in case of non-sinusoidal waveforms. 2.2 AC Analysis of series and parallel RLC Circuits with Resonance, Concept of Bandwidth and Q-factor, 2.3. Three-phase balanced circuits, voltage and current relations in star and delta connections. 3 Title Electromagnetic and Electro-Mechanical Energy Converters 1,2 9 3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		1.2	with dc excitation. Mesh analysis, Superposition, Thevenin,		
2.1 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Harmonics, Total Harmonic Distortion, Power supplied by Harmonic voltages and currents, Power factor in case of non-sinusoidal waveforms. 2.2 AC Analysis of series and parallel RLC Circuits with Resonance, Concept of Bandwidth and Q-factor, 2.3. Three-phase balanced circuits, voltage and current relations in star and delta connections. 3 Title Electromagnetic and Electro-Mechanical Energy Converters 1,2 9 3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		1.3			
phasor representation, real power, reactive power, apparent power, power factor. Harmonics, Total Harmonic Distortion, Power supplied by Harmonic voltages and currents, Power factor in case of non-sinusoidal waveforms. 2.2 AC Analysis of series and parallel RLC Circuits with Resonance, Concept of Bandwidth and Q-factor, 2.3. Three-phase balanced circuits, voltage and current relations in star and delta connections. 3 Title Electromagnetic and Electro-Mechanical Energy Converters 1,2 9 3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control	2	Title	AC Circuits	1,2	12
Concept of Bandwidth and Q-factor, 2.3. Three-phase balanced circuits, voltage and current relations in star and delta connections. 3 Title Electromagnetic and Electro-Mechanical Energy Converters 1,2 9 3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 1,2 6 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		2.1	phasor representation, real power, reactive power, apparent power, power factor. Harmonics, Total Harmonic Distortion, Power supplied by Harmonic voltages and currents, Power factor in case		
and delta connections. 3 Title Electromagnetic and Electro-Mechanical Energy Converters 1,2 9 3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 1,2 6 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		2.2			
3.1 Magnetically Coupled Coils, Self and Mutual Inductance and Dot Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		2.3.			
Convention 3.1 Single Phase Transformer: Principle of Operation, Equivalent Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control	3	Title	Electromagnetic and Electro-Mechanical Energy Converters	1,2	9
Circuits 3.2 Single Phase Transformer: Efficiency and Regulation 3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 1,2 6 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		3.1			
3.3 Introduction to Three-phase Transformers and Applications 4 Title Electric Power Converters 1,2 6 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		3.1	Circuits		
4 Title Electric Power Converters 1,2 6 4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		3.2	Single Phase Transformer: Efficiency and Regulation		
4.1 Fundamental Principles of Buck, Boost and buck-boost DC-DC converters and their Transfer Characteristics, Duty Ratio Control		3.3			
converters and their Transfer Characteristics, Duty Ratio Control	4			1,2	6
		4.1			
5 Title Batteries: Electrical Characteristics and Applications 3					2

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	5.1	Introduction to type of Batteries, Generalized Battery parameters such as SoC, DoD, Energy and Power Densities, Battery C-rating, etc. Comparison of Batteries, Charging and Discharging Characteristic		
	5.2	Selection and Sizing of Battery Packs for Specific Applications		
6	Self- Study	Fundamental Principles of Rotating Machines, Working Principle, Characteristics and applications of Induction motor, BLDC motor and Stepper Motor		
		J	Total	42

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr.	Title of the Experiment
No.	
01	Introduction to Electrical Measuring instruments, Lamp Loads, Inductor Loads and Capacitor Bank
02	Verification of Star-Delta and Delta-star Transformation with Kirchhoff's Laws
03	Verification of Thevenin's Norton's and Maximum Power Transfer Theorem
04	Verification of DC Transient equations in RL and RC Circuits
05	Experimental study of single-phase AC circuit with R-L and R-C Load with Measurement of Power and Power factor
06	Experimental study of R-L-C series Resonance. To plot resonance curve, To compute Bandwidth and Q-factor
07	Experiment on Magnetic Circuit Fundamentals
08	Loading of a transformer: measurement of primary and secondary voltages and currents, and power. To compute efficiency and regulation.
09	Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line- line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between the primary and secondary side. Cumulative three-phase power in balanced three-phase circuits.
	Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal
10	by change of phase-sequence of connections. Torque-Slip Characteristic of an induction motor. Generator operation of an induction machine driven at super-synchronous speed.
11	Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform.
12	Demonstration of V/F control of Induction motor
13	Experimental study of charge and Discharge characteristics of a Lead-acid Battery

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
	Basic Electrical Engineering	Third	I. J.		2010
2	Electrical Technology	Twenty Third	B. L. Theraja	S. Chand Publications	2003

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Basic Electrical Engineering	Second			2019
	Fundamentals of Electrical Engineering	Second	L. S. Bobrow	Oxford University Press	2011
	Electrical and Electronics Technology	Third	E. Hughes	Pearson	2010
	Electrical Engineering Fundamentals	Second		Prentice Hall India	1989
5	Elements of Power Electronics	Second		Oxford University Press	2015
6	Power Electronics: Converters, Application and Design	Second	· · · · · · · · · · · · · · · · · · ·	John Wiley and Sons. Inc.	1995
7	Electric Machinery		A. E. Fitzgerald, C. Kingsley and S. D. Umans	McGraw-Hill	2003

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Soft Skills-I

Course (Category)	Course Name		ching (Hrs/w		cheme ek)			Credits Assigned		
Code		L	T	P	0	E	L	T	P	Total
		1	0	2	2	5	0	1	1	2
SEC	Soft Skills (Communication	Examination Scheme								
		Component			ISE		MSE		ESE	Total
	Skills)		Component		%		%			
AS107		Theory					20			20
ASIU		Laboratory			80				-	80

^{**} MSE will be evaluated on the basis of a written test based on module 1 and 2.

^{**} ISE will be evaluated on the basis of marks scored in practicals, out of 150.

Pre-requis	site Course Codes, if any.						
Course Objective: To apply the principles of communication in a personal and							
profession	al environment.						
Learning Outcomes (LO): At the end of the course students will be able to							
AS107.1	Apply the principles of business writing for professional documents.						
AS107.2	Develop advanced vocabulary and grammar for spoken and written communication.						
AS107.3	Design the draft a formal speech.						
AS107.4	Analyze received information by using active listening and reading skills.						

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS107.1									2	2		2
AS107.2									2	2		2
AS107.3									2	2		2
AS107.4									2	2		2

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AS107.1							
AS107.2							
AS107.3							
AS107.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref	L Hrs.	P Hrs			
1	Title	Vocabulary Building & Grammar						
	1.1	Concept of word formation, the root words from foreign languages and their use in English	7,1	2	4			
	1.2	Common errors in writing, confused pair of words, redundancies, clichés	6, 2					
2	Title	Writing Skills		7	14			
	2.1	Principles of Business Writing: 7Cs of communication, sentence structures, Organizing paragraph in direct and indirect style; Summarization	4					
	2.2	2.2 Practices in Writing: E-mail Etiquettes, e-mail for business purposes						
	2.3	Critical Reading: understanding the concept of critical reading and applying to analyze a given text.	5					
3	Title	Oral Skills		5	10			
	3.1	Listening Comprehension(audio): Pronunciation, intonation, Stress and Rhythm	5					
	3.2	Speaking Practices: 1. Common everyday situation: Conversation and dialogues (group activity, ice-breaking session) 2. Public Speaking: Extempore, formal speech	3					
4	Self- Study	 Basic Rules of Grammar GRE Vocabulary Reading a book(fiction/non-fiction) and preparing a review on it 		6*				
	ı	Total (*Not includ	ed)	42 hrs	1			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

List of activities (Graded, Non-graded)

Sr.	Title of the assignments	Marks
No.	Title of the assignments	WILLIAS
1	Skit based on a given situation	-
2	ISE 1 – Summary Writing	10
3	ISE 2 – Extempore	10
4	ISE 3 – Grammar	20
5	ISE 4 – Vocabulary	20
6	Reviewing a book (fiction/ non-fiction)	10
7	ISE 5 – Email Writing (Inquiry)	20
8	ISE 6 – Email Writing (Complaint)	20
9	ISE 6 – Speech	20
10	ISE 7 – Critical Reading	20
	Total	150

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Communication Skills	2013	Shirley Mathews	Technical Publication, Pune	2013
2	English Vocabulary in Use	1999	_	Cambridge University Press, India	1999

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Oxford Practice Grammar	1999	John Eastwood	Oxford, India	1999
2	Communication Skills	[2011	Meenakshi Raman, Sangeeta Sharma	Oxford, India	2011
3	Communication Skills	2010	ır, weera Bharwanı	Synergy Knowledge ware, India	2010
4	English Grammar for Today	2005	Geoffrey Leech	Palgrave, UK	2005
5	Word Power Made Easy	1978	Norman Lewis	Anchor Books, New York	1978

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Technical Shop

Course (Category) Code	Course	Teaching Scheme (Hrs/week)					Credits Assigned			
	Name	L	T	P	О	E	L	T	P	Total
		1	0	2	2	5	0	1	1	2
CEC		Examination Scheme								•
SEC	Technical Shop	Component			·-		1SE		ESE	Total
					%		%		%	%
A C107		Theory							_	_
AS106		Laboratory			80				20	100

Pre-requisi	ite Course Codes, if any.							
Course Objective: To provide essential modern skills that enable today's engineers to create our tomorrow.								
Learning (Outcomes (LO):At the End of the course students will be able to							
AS106.1	Assemble and disassemble computer hardware for PCs and laptops.							
AS106.2	Create and troubleshoot basic computer networks.							
AS106.3	Create and troubleshoot basic electrical networks.							
AS106.4	Identify and troubleshoot electrical gadgets.							
AS106.5	Model any object in 3d software and prepare it for 3d printing.							
AS106.6	Design and fabricate PCBs.							
AS106.7	Construct physical structures using acrylic and PVC materials.							

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS106.1					3				3			3
AS106.2					3				3			3
AS106.3					3				3			3
AS106.4					3				3			3
AS106.5			3		3				3			3
AS106.6			3		3				3			3
AS106.7			3		3				3			3

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

PEO1 PEO2	PEO3 PEO4	PSO1	PSO2
-----------	-----------	------	------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

AS106.1	2			
AS106.2	2			
AS106.3	2			
AS106.4	2			
AS106.5	2			
AS106.6	2			
AS106.7	2			

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Lecture Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Unit1	Introduction to skill shop.		
	1.1	The need for skill shop. The utility of the contents covered. Special significance to Computer and EXTC students.		1
2	Unit2	3D modeling - ideation and creation.		
	2.1	Introduction to the various 3d software and their specialization. AutoCAD: brief 2d toolset, establishing 3d workspaces, 2d to 3d tools, primitive based design, sections, lofting and extrusion, revolving and other solid operations, dimensionally accurate design. Blender (open source): differences in approach compared to AutoCAD, solid and surface based modeling, modifiers and symmetric modeling, advanced mesh-based and sculpting techniques.		6
3	Unit3	3d printing - prototyping and fabrication.		4
	3.1	Processing 3d models for slicing, slicing models for 3d printing, slicing software (open source). File formats and conventions, watertighting. The file pipeline from .dwg/.blend to .stl to .gcode. File optimization. 3d printing - the process and the mechanisms. FDM (fused deposition modeling) based printing, printing materials and variations, best practices, troubleshooting, alternative, non-machine based 3d printing techniques using pens.		
4	Unit4	Specialized tool sets for manufacturing		1
	4.1	Autodesk Inventor/Fusion 360/ANSYS		
			Total	12

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component: comprises building and assembling various trade jobs such as: Trade job 1: Computer Assembly (4 hours)

- Assemble all components of a computer from an OFF and disassembled state, installing CPU, RAM, hard drive, connecting data and power pins, turn it on, install an operating system.
- Additional training imparted during/for this trade:
- Identification of components such as power supply, motherboard, processor, hard disk drive, RAM etc.
- Assembly, disassembly, and component identification of a laptop.
- o Basic troubleshooting.

Trade job 2: Network Switch Installation (2 hours)

- Identify various components of a network assembly.
- Crimp LAN cables using crimping tools and patching them into a 10 port LAN switch and testing operation of the network.
- Adopt best practices in LAN network assembly.

Trade job 3: Electrical Networks (2 hours)

- Assemble different types of networks such as:
- House wiring
- Staircase wiring
- Godown wiring
- o 3-phase wiring
- Study wiring diagram
- Test, trace and troubleshoot these networks with tools such as multimeters

Trade job 4: Electrical Gadgets (2 hours)

• Repairing electrical household appliances: ceiling fan, electric iron.

Trade job 5: 3D Modeling and Printing (2 hours)

- Using the skills learned in the 3d sessions to develop a CAD file (.iges/.step/.dwg) of a 3D model and exporting it as an .stl file for the purpose of 3D printing.
- Importing the 3D .stl file in slicers to generate a .gcode file for 3D printing through slicing, using open source software

Trade job 6: Make a House (8 hours)

- Design a PCB using software such as Eagle for a simple miniature house with various points for patching LED lights.
- Fabricate the PCB using various tools.
- Additional skills learned: soldering and desoldering, layout drawing, positive and negative film making, PCB etching and drilling, tinning.
- Fabricate an acrylic house using tools such as cutters, hacksaws, files, glue guns, sand paper, etc.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

- Additional skills learned: drilling holes at precise locations for installing LED lights using drill machines.
- Install a PVC fence around the house using PVC formed in L shaped joints at the corners.
- Create various additional models around the house street light, chimneys and lights, etc.
- Connect the PCB to the electrical network and test proper operation of the network.
- Additional skills learned: integration of multiple design and fabrication techniques to create a finished product.

Trade job 7: Make a Product

Students may select one of the following jobs to create into a finished product. They are then required to either successfully sell the product or purchase it themselves to recover the cost of materials, resulting in a reduction in generated waste. The choices are:

- Keychain
- Simple extension board
- Liquid Level Sensor
- Water Level Controller
- Voice Recorded Message (Jan-Gan-Man)
- Audio Amplifier using IC386
- Lead Acid Battery Charger (6v/12v)
- LM723 IC power supply AI, 0-30v
- LED chaser

Trade job 8: Modern Plumbing

To better understand modern plumbing materials and tools, fabricate a simple stool made of PVC material, including cutting pipes into half pipes, L-shaped joints, and test it for sturdiness.

The above trades will be carried out in two labs in parallel per batch as follows:

Lab 1 (Room 202)	Lab 2 (Prayas Idealab)
Trade job 1: Computer Assembly Trade job 2: Network Switch Installation Trade job 3: Electrical Networks Trade job 4: Electrical Gadgets	Trade job 5: 3D Modeling and Printing Trade job 6: Make a House Trade job 7: Make a Product Trade job 8: Modern Plumbing

IDEALab Demonstrations: (4 hours)

Demonstrations on various IDEALab equipment, such as:

- CO2 Laser Cutter and Engraver
- Mini Lathe with Drilling
- Sewing Machine
- Vinyl Cutter and Printer (for making banners, posters, stickers, t-shirt printing)
- 3D scanner
- All-in-one PCB maker (Voltera v1) PCB printing, heating, drilling and soldering
- PCB fabrication reflow oven
- Computer desktop based drilling, milling and engraving machine Roland SRM20

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

- Welding machines (Spot, ARC etc)
- Test and measuring equipments
- Mechanical fabrication (Wood cutter etc)

Course Evaluation:

The course is evaluated via:

- End-of-semester quiz exam. (20 marks)
- Fabrication and submission of finished jobs in all 6 included trades. (80 marks)

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Indian Knowledge System (IKS)

Indian Knowledge System (IKS) holds a significant place in your curriculum, as recommended by NEP 2020. The Government of India has mandated a compulsory credit generic IKS course to spread the rich heritage and traditional knowledge of our country in various fields such as Arts and Literature, Agriculture, Basic Sciences, Engineering & Technology, Architecture, Management, Economics, and more. In line with this, the Government of Maharashtra has recommended a generic IKS course for UG students in the first year of your graduation.

Introduction:

The Indian knowledge system is a rich and diverse heritage of intellectual, philosophical, and scientific traditions that have evolved over thousands of years in the Indian subcontinent. It encompasses a wide range of disciplines, including philosophy, spirituality, medicine, mathematics, astronomy, and more. The Indian knowledge system reflects a deep reverence for wisdom, a holistic approach to life and well-being, and a profound understanding of the interconnectedness of various aspects of human existence. It remains a vibrant and influential part of India's cultural and intellectual heritage.

The Indian knowledge system has had a profound and lasting influence not only on the subcontinent but also on the broader world. Its teachings and practices continue to be studied, adapted, and appreciated globally, making it an integral part of human heritage.

Course (Categor	Course Name	Teaching Scheme (Hrs/week)				Cre	Credits Assigned			
y) Code		L	T	P	0	E	L	T	P	Total
		2	0	0	1	3	1	1	-	2
AEC	Indian Knowledge	Examination Scheme								
	System (IKS)	Component ISE			N	MSE		SE	Total	
		(%)				(%)	(%)		
AEC01		Theor	y						20	20
11201		Labor	atory		80					80

^{**} ISE will be evaluated on the basis of individual and group activities.

Pre-requisite Course Codes, if any.

Course Objectives:

- To create awareness amongst the students about the true history and rich culture of the country.
- To understand the scientific value of the traditional knowledge of India.
- To explain the key features of the Indian Numeral System and appreciate the key role it has played in the advancement of Science & Technology.
- To develop familiarity with the science, engineering & technology heritage of ancient and medieval India

^{**} ESE will be evaluated on overall modules of the course.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Learning	Outcomes (LO): At the end of the course students will be able to
AEC01 .1	Develop a deep understanding of the major philosophical traditions in India.
AEC01 .2	Appreciate Indian mathematics and mathematicians along with number systems.
AEC01 .3	Understand the interdisciplinary nature of Indian knowledge systems and their connections to science, technology, and other fields.
AEC01 .4	Establish familiarity with the classical languages and linguistics of India and exposure to key texts.

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AEC01.1									2	2		2
AEC01.2									2	2		2
AEC01 .3									2	2		2
AEC01.4									2	2		2

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AEC01.1							
AEC01 .2							
AEC01 .3							
AEC01.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create	İ
----------	------------	-------	---------	----------	--------	---

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Theory Component

Modul e No.	Unit No.	Topics	Ref.	L H rs.	P Hr s
1	Title	Indian Knowledge System - An Introduction			
	1.1	What is IKS? Why do we need IKS?		1	
	1.2	Organization of IKS Historicity of IKS Some salient aspects of IKS			
2	Title	The Vedic Corpus:		2	3
	2.1	Introduction to Vedas A synopsis of the four Vedas Sub-classification of Vedas Messages in Vedas			
	2.2	Introduction to Vedāṅgas Prologue on Śikṣā and Vyākaraṇa Basics of Nirukta and Chandas			
	2.3	Introduction to Kalpa and Jyotişa Vedic Life: A Distinctive Features			
3	Title	Number Systems and Units of Measurement		3	2
	3.1	Number systems in India - Historical evidence Salient aspects of Indian Mathematics Bhūta-Saṃkhyā system			
	3.2	Kaṭapayādi system Measurements for time, distance, and weight 1. Piṅgala and the Binary system			
4	Title	Mathematics		3	2
	4.1	Introduction to Indian Mathematics Unique aspects of Indian Mathematics Indian Mathematicians and their Contributions			
	4.2	Algebra Geometry Trigonometry			
	4.3	Binary mathematics and combinatorial problems in Chandaḥ Śāstra Magic squares in India			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

5	Title	Linguistics	3	3
	F 1	T. I. C. T. C.	_	
	5.1	Introduction to Linguistics		
		Role of Sanskrit in natural language processing		
		Aṣṭādhyāyī		
		Phonetics		
	5.2	Word generation		
		Computational aspects		
		Mnemonics		
	5.3	Recursive operations		
		Rule based operations		
		Sentence formation		
		Verbs and prefixes		
		Total (*Not included)	12 hı	:S

List of activities (Graded, Non-graded)

Sr. No	Title of the assignments	Marks
•		
1	ISE 1 – Group Discussion	30
2	ISE 2 – Presentation	30
3	ISE 3 – Assignment (Group or Individual)	20
5	ESE	20
	Total	100

Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
	IKS: The Knowledge System of Bhārata	2023	Bhag Chand Chauhan	Garuda Prakashan	2023
2	Introduction to Indian Knowledge System: Concepts and Applications	2022	B.Mahadevan (Author), Nagendra Pavana (Author), Vinayak Rajat Bhat (Author)	PHI Learning	2022

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Reference Books:

- 1. Raha, Sibaji, et al. Histrory of Science in India Volume-1, Part-I, Part-II, Volume VIII. National Academy of Sciences, India and The Ramkrishan Mission Institute of Culture, Kolkata (2014).
- 2. Kohle, Pradeep et al (edited by). Pride of India- A Glimpse of India's Scientific Heritage. Samskrit Bharati (2006).
- 3. Verma, Keshav Dev. Vedic Physics, Motilal Banarsidass Publishers (2012).
- 4. Soni, Suresh. India's Glorious Scientific Tradition, Ocean Books Pvt. Ltd. (2010).
- 5. Kapur K and Singh A.K (Eds) 2005). Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla. Tatvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.
- 6. Nair, Shantha N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.
- 7. Kulkarni, R P, Glimpese of Indian Engineering and Technology (Ancient & Medieval period, Munshiram Manoharlal Publishers Pvt. Ltd. 2018
- 8. Pathak, AK, Science and Technology in India, Anshika prakashan pratapgarh, 2016
- 9. NVP, Unithiri, Indian Scientific Traditions (Professor K.N. Neelakantan Elayath Felicitation Volume), publication division university of Calicut, 2006
- 10. Biswal, S, B L ray, Vedic Science and technology, DK Print world, 2009
- 11. Yadav, BS, Ancient Indian Leaps into Mathematics, Brikausher publication, 2010

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Universal Human Values

Course (Categor	Course Name		Teaching Scheme (Hrs/week)					Credits Assigned			
y) Code		L	T	P	O	E	L	T	P		
										Total	
	Universal Human	2	0	0	1	3	1	1	-	2	
AEC	Values (UHV)			Exa	mina	tion S	Schen	cheme			
		Comp	onent	IS	E	N	ISE	E	SE	Total	
				9/	o O		%	0	6	%	
AEC02		Theor	y		•			20		20	
AEC02		Labor	atory	80	0					80	

^{**} ISE will be evaluated on the basis of individual and group activities.

Pre-requisite Course Codes, if any.

Course Objectives:

- To develop a holistic perspective based on self-exploration, family, society and nature/existence.
- To understand (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- To strengthen self-reflection.
- To develop commitment and courage to act.

10	To develop commitment and courage to act.					
Learning	Outcomes (LO): At the end of the course students will be able to					
AEC02 .1	Demonstrate a comprehensive understanding of what human values are and their significance in individual and societal contexts.					
AEC02 .2	Develop ethical awareness and the ability to critically evaluate moral and ethical dilemmas in various aspects of life.					
AEC02 .3	Foster a sense of social responsibility and awareness of the global community, including environmental and social justice issues.					
AEC02 .4	Promote interdisciplinary learning by exploring how values and ethics intersect with various academic disciplines and real-world challenges.					

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO											
	1	2	3	4	5	6	7	8	9	10	11	2
AEC02 .1								2	2	2		2
AEC02 .2								2	2	2		2
AEC02 .3								2	2	2		2
AEC02 .4								2	2	2		2

^{**} ESE will be evaluated on overall modules of the course.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
AEC02.							
AEC02.							
2 AEC02 .							
3							
AEC02 . 4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	-------------------	-------	---------	----------	--------

Theory Component

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Module No.	Unit No.	Topics	Ref	L Hrs.	P Hrs
1	Title	Course Introduction - Need, Basic Guidelines, Content and Process for Value Education		2	2
	1.1	Purpose and motivation for the course, recapitulation from Universal Human Values-I Self-Exploration—what is it? - Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration Continuous Happiness and Prosperity- A look at basic Human Aspirations			
	1.2	 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels. 			
2	Title	Understanding Harmony in the Human Being - Harmony in Myself!		2	2
	2.1	7. Understanding human being as a co-existence of the sentient 'I' and the material 'Body' 8. Understanding the needs of Self ('I') and 'Body' - happiness and physical facility 9. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)			
	2.2	10. Understanding the characteristics and activities of 'I' and harmony in 'I' 11. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail 12. Programs to ensure Sanyam and Health.	l		
3	Title	Understanding Harmony in the Family and Society- Harmony		3	2
		in Human-Human Relationship		_	
	3.1	13. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship 14. Understanding the meaning of Trust; Difference between intention and competence 15. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship			

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

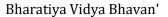
	3.2	16. Understanding the harmony in the society (society being an		
		extension of family): Resolution, Prosperity, fearlessness (trust) and		
		co-existence as comprehensive Human Goals		
		17. Visualizing a universal harmonious order in society- Undivided		
		Society, Universal Order- from family to world family. Include		
		practice sessions to reflect on relationships in family, hostel and		
		institute as extended family, real life examples, teacher-student		
		relationship, goal of education etc. Gratitude as a universal value in		
		relationships. Discuss with scenarios. Elicit examples from students' lives		
		Understanding Harmony in the Nature and Existence - Whole		
ļ	Title	existence as Coexistence	_2	2
	4.1	18. Understanding the harmony in the Nature		
		19. Interconnectedness and mutual fulfillment among the four		
		orders of nature recyclability and self regulation in nature		
	4.2	20. Understanding Existence as Co-existence of mutually interacting	-	
		units in all pervasive space		
		21. Holistic perception of harmony at all levels of existence. Include		
		practice sessions to discuss human being as cause of imbalance in		
		nature (film "Home" can be used), pollution, depletion of resources		
		and role of technology etc.		
5	Title	Implications of the above Holistic Understanding of Harmony	3	2
	F 1	on Professional Ethics		
	5.1	22. Natural acceptance of human values		
		23. Definitiveness of Ethical Human Conduct		
		24. Basis for Humanistic Education, Humanistic Constitution and		
		Humanistic Universal Order		
	5.2	25. Competence in professional ethics: a. Ability to utilize the		
		professional competence for augmenting universal human order b.		
		Ability to identify the scope and characteristics of people friendly		
		and eco-friendly production systems, c. Ability to identify and		
		develop appropriate technologies and management patterns for		
		above production systems.		
		26. Case studies of typical holistic technologies, management		
		models and production systems		
	5.3	27. Strategy for transition from the present state to Universal	1	
		Human Order: a. At the level of individual: as socially and		
		ecologically responsible engineers, technologists and managers b.		
		At the level of society: as mutually enriching institutions and		
		organizations		
		28. Sum up.		
		Include practice Exercises and Case Studies will be taken up in		
		Practice (tutorial) Sessions eg. To discuss the conduct as an		
		engineer or scientist etc.		
Total			12 hrs	<u> </u>

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

List of activities (Graded, Non-graded)

Sr. No.	Title of the assignments	Marks
1	ISE 1 – Group Discussion	30
2	ISE 2 – Presentation	30
3	ISE 3 – Assignment (Group or Individual)	20
5	ESE	20
	Total	100


Text Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Human Values	2010	R R Gaur, R Sangal, G P	Excel	2010
	and Professional		Bagaria	Books	
	Ethics				

Reference Books:

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

SPIT/UG Curriculum/2023 Iteration/CSE/pg.84

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SEMESTER III

				SEM III						
Sr. No	Course Category	Abbrev iation	Course Code	Course Name	L	T	P	0	E	С
1	Basic & Engg. Sciences	BSES	CS201	Discrete Structures and Graph Theory	3	0	0	5	8	3
2	Basic & Engg. Sciences *	FOM-I	MA202	Foundation of Mathematics-I*	2	1	0	0	3	3
3	Skill Enhancemen t Course	SEC	AS201	Soft Skill II-Professional Communication Skills	0	1	2	4	7	2
4	Basic & Engg.	BSESE		Course I						3
	Sciences		AS101	Engineering Physics	2	0	2	4	8	
	Elective		AS102	Engineering Chemistry	2	0	2	3	7	
			AS103	Biology for Engineers	3	0	0	3	7	
			AS104	Engineering Mechanics	2	0	2	4	8	
			AS105	Engineering Graphics	1	0	2+2	2	7	
			AS108	Material Science	2	0	2	4	8	
			AS109	Environmental Science	3	0	0	3	6	
			AS110	Energy Science	2	0	2	3	7	
			AS111	Thermal & Fluid Engineering	3	0	0	3	6	
5	Humanities	HSSM-I	HS2XX	Course I	2	0	0	3	5	2
7	Program	PCC	CS202	Data Structures	3	0	2	4	9	4
8	Core Courses (12 Credits)	PCC	CS203	Computer Organization and Architecture	3	0	2	4	9	4
9		PCC	CS204	Database Management Systems	3	0	2	4	9	4
10	Cocurricular Courses	CC (LLC)	LLCXX	LLCIII	1	0	0	1	2	1
				Total	17	1	10	28	56	23

^{*}Only for Lateral Entry Students

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category) Code	Course Name	Teaching Scheme (Hrs/week)						Credits Assigned			
		L	T	P	O	E	L	T	P	Total	
		3	0	0	5	8	3	0	0	3	
(PC)	Discrete	Examination Scheme									
	Structures and Graph Theory	Compone	Component			N	MSE	E	SE	Total	
CS201	Graph Theory	Theory	Theory				75	1:	50	300	
C5201		Laborato	ry								

Pre-requis	site Course Codes, if any.
	bjective: To teach students how to think logically and mathematically. It provides the mathematical
foundation	that is used in most areas of computer science.
Course O	utcomes (CO):At the End of the course students will be able to
CS201.1	Use set theory, logic and its various proof techniques to solve given problem.
CS201.2	Analyze the problems based on the concepts of relations, functions, lattices and recurrence
	relations to solve problems
CS201.3	Apply the concepts of graph, trees and their various types with their traversing techniques to solve
	problems.
CS201.4	Apply the basics of coding theory and cryptography to solve real world problems.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS201.1	3	2										2
CS201.2	3	2										2
CS201.3	3	2										2
CS201.4	3	2										2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS201.1							
CS201.2							
CS201.3							
CS201.4							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Und	lerstand A _l	pply√	Analyze√	Evaluate	Create
--------------	-------------------------	-------	----------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Set Theory, Logic and Proofs	1, 2	
	1.1	Finite and infinite set, Union, Intersection, Disjoint, and Difference of two sets. Power Set, Partition of Sets, Ordered Sets, De Morgan's Laws, Principle of Inclusion Exclusion		2
	1.2	Predicates, Propositions, Conditional Propositions, Logical Connectivity, Proposition calculus, Universal and Existential Quantifiers, First order logic, Equivalence, Normal Forms, Introduction to proofs, Mathematical Induction, Strong Induction, Well-ordering principle, Logical inference		6
2	Title	Relations, Functions and Lattices	1, 2	
	2.1	Product Sets and Partitions, Paths in relations and Diagraphs, Properties of Relations, Closure of Relation, Equivalence Relations, Operations on Relations, Warshall's Algorithm, Partially Ordered Sets, External Elements of Partially Ordered Sets, Hasse Diagram		8
	2.2	Composition of Functions, Invertible Functions, Recursive Functions, Hashing, Pigeon hole Principle, Extended PHP		3
	2.3	Lattice, Sub lattice, Isomorphic Lattices, Properties of Lattice, Special Types of Lattices		4
	2.4	Recurrence Relations – Introduction, Linear Recurrence Relations with constant coefficients, Homogeneous solutions, Particular Solutions, Total Solutions, Solution by the method of Generating functions, solving Recurrence Relations		5
3	Title	Graph Theory	1, 2	
	3.1	Concepts and terminologies, Graphs as Model (Konigsberg Bridge Problem)		4
	3.2	Matrices, Isomorphism, Bipartite Graphs, Directed Graphs		
	3.3	Minimal Spanning Trees-Prim's Algorithm and Kruskal's Algorithm		
4	Title	Graph connectivity	1, 2	
	4.1	Cycles – Transport Networks, Max Flows, Matching Problems, Maximum Bipartite Matching, Perfect Matching		6
	4.2	Euler Paths- Circuits, Hamiltonian Paths- Circuits		
	•	•		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	4.3	Coloring Graphs, Chromatic Polynomial, Planer Graphs		
5	Title	Coding Theory	1, 2	
	5.1	Hamming Code, Minimum Distance		4
	5.2	Number Theory, Modular Arithmetic and applications to cryptography; Diffie-Hellman Algorithm		
6	Self- Study	Algebraic Structures - Semi group, Monoids, Groups, Cyclic groups, Abelian groups, Normal Subgroups	1, 2	5*
	•	Total (*Not inclu	ided)	42

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
	Discrete Mathematics and it's applications	Eight	Kenneth H. Rosen	Tata McGraw- Hill	2021
2	Discrete Mathematical Structures		Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem- ur-Rehman	Pearson Education	2015

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Elements of Discrete Mathematics	Fourth	C. L. Liu	Tata McGraw- Hill	2012
2	Introduction to graph Theory	Second		Pearson Education	2015
3	Discrete Mathematical Structures with Applications to Computer Science		Jean-Paul, Tremblay R. Manohar	Tata McGraw- Hill	1987

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course		Teaching Scheme (Hrs/week)						Credits Assigned			
(Category) Code	Course Name	L	Т	P	O	E	L	T	P	Total	
		3	0	2	4	09	3	0	1	4	
(PC)		Examination S					Scheme				
	Data — Structures	Component			ISE		MSE	E	SE	Total	
CE202	Structures	Th	eory		20		30	10	00	150	
		Labo	ratory		50			5	0	100	

Pre-requisite	Problem solving using imperative programming
Course Codes, if	
any.	
Course Objective: To	o introduce the fundamentals and abstract concepts of Data Structures for Problem
Solving.	
Course Outcomes (C	O): At the End of the course students will be able to
CE202.1	Apply various operations of linear and non-linear data structures to given problems.
CE202.2	Apply the concepts of Trees and Graphs to a given problem.
CE202.3	Understand various operations of heap data structures.
CE202.4	Implement the concepts of hashing on a given problem.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CE202.1	3		3						3	3	3	
CE202.2	3		3						3	3	3	
CE202.3	3		3						3	3	3	
CE202.4	3		3						3	3	3	

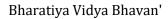
CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CE202.1			1			1	
CE202.2			1			1	
CE202.3			1			1	
CE202.4			1			1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understan	d Apply	Analyze	Evaluate	Create
--------------------	---------	---------	----------	--------

Sardar Patel Institute of Technology


(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Theory Component

Module	Unit No.	Topics	Ref.	Hrs.
No.	Title	Introduction to Data Structures		
1	1.1	Concept of Linear and Nonlinear Data Structures	1,2	1
	1.2	Stack: Stack as ADT, operations on stack, Applications of Stacks	1,2	3
	1.3	Queue: Queue as ADT, Operations on Queue, Applications of Queue, Types	1,2	3
	1.3		1,2	3
	1.4	of Queue-Circular and Priority Queue	1.2	
	1.4	Linked List: Linked List as ADT, Operations on Singly Linked List. Types of	1,2	6
		linked list- Linear and circular linked lists, Doubly Linked List, Circular Linked		
_		List and its operations, Applications of linked List		
2	Title	Trees		
	2.1	Trees as ADT, General tree v/s Binary Tree Terminology, Traversal of Binary	1,2	4
		Tree, Operations on Binary tree, Binary Search Tree and its operations,		
		Expression Tree		
	2.2	Self-balancing trees: AVL trees Properties, Rotations, Insertion, Deletion	1,2	4
	2.3	Introduction to B tree- Insertion, Deletion,	1,2	5
		Introduction to Tries (Prefix Tree) - Operations and Applications		
3	Title	Graphs		
	3.1	Graph as ADT, Introduction to Graph, Representation of GraphAdjacency Matrix, Adjacency List, Graph Traversal Technique	1,2	3
4	Title	Heap Structure		
	4.1	Heap as ADT, Introduction to Heap Structures, Min Heap, Max Heap,	1,2	4
		Construction of Heap	ĺ	
	4.2	Binomial Heaps, Fibonacci heaps - Structure of Fibonacci heaps,	1,2	5
		Mergeable-heap, operations, decreasing a key and deleting a node		
5	Title	Hashing		
	5.1	Introduction to Hash Table, Hash functions, Collision Resolution Techniques	1,2	4
6	Self-	Optimal Binary Search Tree, Probabilistic Data Structures, B+ trees, multi-	1,2	5*
	Study	dimensional trees (k-d trees, quadtrees)	ĺ	
			Total	42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implement a given problem statement using Stack
2	Implement a given problem statement using Queue
3	Implement a given problem statement using Linked List
4	Implement a given problem statement using Doubly Linked List
5	Implement a given problem statement using Binary Trees or Tries
6	Implementation of Expression Tree
7	Implement insertion of node in AVL tree

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

8	Apply Graph Traversal Technique on a given problem statement to solve the problem
9	Implement Operations of Heap Structures
10	Implement hash functions with different collision resolution techniques

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Introduction to Algorithms	Third	Thomas H. Cormen, Charles E.	MIT Press	2009
			Leiserson, Ronald L Rivest,		
			Clifford Stein		
2	Fundamentals of Computer	Second	Horowitz E, Sahni S and S.	Galgotia	2010
	Algorithms		Rajasekaran	Publications	
3	Data Structures and Algorithm	Fourth	Mark Allen Weiss	Pearson	2014
	Analysis in C++				
4	Probabilistic Data Structures	First	Andrii Gakhov	BoD GmbH,	2022
	and Algorithms for Big Data			Germany	
	Applications				

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Classic Data Structures	Second	Samanta Debasis	PHI	2009
2	Data Structures with C	First	Seymour Lipschutz	Schaum's	2010
				Outline Series	
3	Data Structures and	First	Michael T. Goodrich, Roberto	Wiley	2013
	Algorithms in Python		Tamassia, and Michael H.		
			Goldwasser		
4	The Algorithm Design	Second	Steven S. Skiena	Springer	2008
	Manual				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category)	Course Name	Teac	ching So	cheme (eme (Hrs/week)			Credits Assigned			
Code		L	T	P	O	E	L	T	P	Total	
(PC)	Computer	3	0	2	4	9	3	0	1	4	
	Architecture Organization	Examination Scheme									
		Com	ponent		ISE		MSE	E	SE	Total	
CS203		Theory			20		20	•	50	100	
		Labo	oratory		80				20	100	

Pro-roquis	site Course Codes, if any.	Digital Systems
_		, ,
Course Ob	jective: Imparting concepts of each	ch component of computer architecture thoroughly with
practical as	spects including memory systems a	and I/O communications with interfacing
Course Ou	itcomes (CO): At the End of the co	ourse students will be able to
CO.1	Conceptualize basic computer str	ructure with its models and compute performance metrics.
CO.2	Design algorithms to solve ALU	operations
CO.3	Comprehend processor organiza analysis	tion with various design methods of CPU with comparative
CO.4	Design memory systems with ana	alysis of mapping techniques for cache and virtual memory
CO.5	Comprehend different types of I/methods and arbitration techniqu	O buses, compare and contrast different types of data transfer es
CO.6	Analyze different parallel organizati	ions that includes pipelined and parallel processors

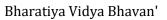
CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO.1	3				2							
CO.2	3	3			2							
CO.3	3	2	2		2							
CO.4	3											
CO.5		2	2		2							
CO.6	3											

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)


	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
CO.1	2	2	-	-	-	-
CO.2	2	2	-	-	-	-
CO.3	2	2	-	-	-	-
CO.4	2	2	-	-	-	-
CO.5	2	2	-	-	-	-
CO.6	2	2	-	-	-	-

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember

Theory Component

Module	Unit No.	Topics	Ref.	Hrs.
No. 1	Title	Overview of Computer Architecture and Organization		5
	1.1	Introduction of Computer Organization and Architecture, Basic organization of computer and block level description of the functional units, Evolution of x86 Computers, Von Neumann model, Harvard Model, Embedded system	1,2	
	1.2	Performance Issues: Designing for performance, Amdahl's Law, Multi-core, GPGPU	1,2	
2	Title	ALU, Processor Organization and Control Unit Design		10
	2.1	ALU: Integer and Floating Point Operation CPU Architecture, Register Organization, Instruction formats, basic instruction cycle. Instruction interpretation and sequencing, Case Study of 80386 architecture and Register Organization	2,3	
	2.2	Control Unit: Soft wired (Micro-programmed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations	2,3	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	2.3	RISC and CISC: Introduction to RISC and CISC architectures and design issues.	2,3	
3	Title	Memory Systems Organization		12
	3.1	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics.	2	
	3.2	Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory. Case study of Pentium Processor Cache Memory Model (MESI Protocol)	2,4	
	3.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement policies. Case study of 80386 Virtual Memory Concepts	2,3	
4	Title	I/O Organization		5
	4.1	Buses: Types of Buses, Bus Arbitration, BUS standards	1,2	
	4.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	1,2	
5	Title	Parallel Processing		11
	5.1	Advanced Processor Models: Real Model, Protected Model, Virtual Model (x86 Processors)	3	
	5.2	Superscalar Architecture: Case study of Pentium processor	4	
	5.3	Pipelined Architecture: Pipleine Stages, Pipeline Hazards, Mitigation of Hazards with branch prediction and data forwarding techniques	1,2,4	
	5.4	Introduction to parallel processing concepts, Flynn's classifications,	2	
6	Self- Study	Comparative Study of microprocessors and micro architectures with respect to their important features. Detailed analysis of Multicore and GPGPU Architectures. Vector and Array Processors with VLIW architecture. 8086 instructions set with assembler directives		
			Total	42

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

[Only for CE/CSE]

Sr. No	Title of the Experiment
1	Installation and configure: DOS, MASM, Debug and X86 Mode
2	Implementation of various arithmetic operations through assembly language
	programming for 8086 using MASM and Debug.
3	Implement various String Operations in 8086 through the utilities provided by DOS
	and BIOS interrupts (MASM)
4	Block Transfer and Block Exchange using Index Registers
5	Drawing basic shapes like triangle, etc. using BIOS services [Use C/MASM]
6	Design Password Detection Application using BIOS and DOS interrupts along with
	8086 instructions.
7	Implement file operations [DOS Interrupts in C/MASM]
8	Implement I/O interfacing using inbuilt speakers of IBM PC
9	Implement Booth's Multiplication Algorithm
10	Implement Division Algorithm (Non-Restoring and Restoring)
11	Implementation of Mapping techniques of Cache memory
12	Implementation of Page Replacement Policies

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Organization	Fifth	Carl Hamacher, Zvonko Vranesic and Safwat Zaky	Tata McGraw- Hill	2002
2	Computer Organization and Architecture: Designing for Performance	Eighth	William Stallings	Pearson	2010
3	The 80386, 80486, and Pentium Microprocessor: Hardware, Software, and Interfacing	Third	Walter Triebel	Pearson	1997
4	Pentium Pro Processor System Architecture	Third	Tom Shanely	Addison Wesley	1996

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Reference Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Structured Computer Organization	Sixth	Andrew S.	Pearson	2013
			Tanenbaum		
2	Microprocessor and Interfacing:	Third	Douglas V Hall	Tata-	2012
	Programming & Hardware			McGraw Hill	
3	Computer Architecture and Organization:	Second	B. Govindarajulu	McGraw Hill	Paperback-
	Design Principles and Applications				2017
4	Advance Computer Architecture:	Third	Kai Hwang	Tata-	2017
	Parallelism, Scalability, Programmability			McGraw Hill	
5	Programmer's reference Manual for IBM	First	Steven Armburst	Tata-	1986
	Personal Computers			McGraw Hill	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course		Teach	Teaching Scheme (Hrs/week)					Credits Assigned				
(Category)Code	Course Name	L	T	P	0	E	L	T	P	Total		
		3	0	2	4	9	3	0	1	4		
(PC)		Examination Scheme										
	Database	Comp	Component			MS	SE	ES	E	Total		
	Management	Theory		7:	75		75)	300		
CS204	systems	Labor	ratory	50	0	-	-	50)	100		

Pre-requis	site Course Codes, if any.					
Course Ol	bjective: To efficiently and effecti	vely Design, develop, maintain and retrieve				
the Inform	the Information from DBMS.					
Learning	Learning Outcomes (LO):At the End of the course students will be able to					
CS204.1	Demonstrate understanding of gi	ven system to construct a database model.				
CS204.2	Apply various Relational and SQ	L commands on the populated database.				
CS204.3	Examine the functional dependent	cies to make a normalized database system.				
CS204.4	Examine transaction processing t	echniques on a database.				
CS204.5	Illustrate indexing, query process	ing and optimization method on a database.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CS204.1	1	2	2	2	2	1		1	2			2
CS204.2	2	2	2		2							
CS204.3	1	2	2		2							
CS204.4	1	2			2							
CS204.5	2	2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS204.1					3	3	
CS204.2							
CS204.3							
CS204.4							
CS204.5						2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.	
1	Title	Introduction: Database Concepts and ER Modeling	1,2	- 00	
	1.1	Introduction to basic concept of Database, Characteristics of databases, File system V/s Database system, Users of Database system, Database Administrator, Data Independence, Codd's Rule, DBMS system architecture.		08	
	1.2	Introduction to ER model, Benefits of Data Modeling, Types of data Models, Phases of Database Modeling, The Entity-Relationship (ER) Model, Extended Entity-Relationship (EER) Model			
2	Title	Relational Algebra and SQL	1,2	15	
	2.1	Introduction, Mapping the ER and EER Model to the Relational Model, Relational Algebra: Overview, Basic Operators, Extended Operators.			
	2.2 Overview of SQL, Data Definition Commands, Data Manipulation commands, Data Control commands, Set operations, aggregate function, null values, Views in SQL, Subquery, Trigger, stored procedure 3 Title Normalization				
3	Title	Normalization	1,2	06	
	3.1	Design guidelines for relational schema, Functional dependencies			
	3.2	Normal Forms- 1NF, 2 NF, 3NF, BCNF and 4NF,5NF			
4	Title	Transaction Processing and Recovery	1,2	07	
	4.1	Transaction concept, Transaction states, ACID properties, Implementation of atomicity and durability, Concurrent Executions, Serializability, Recoverability, Lock-based, Timestamp-based, Validation-based protocols.			
	4.2	Shadow paging, Deadlock handling.			
5	Title	Indexing and Query Optimization:	1,2	06	
	5.1	Indexing techniques: B-trees, Hashing.			
	5.2	Query processing and optimization, Query execution plans.			
6	6 Self Study 1. NO SQL-Data type, Database creation, Basic command for creation, updating and querying the database, Mongo dB, 2. Real-world database applications and case studies			5*	
		Total (*Not incl	uded)	42	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component:

Assign a case study for group of 2/3 students and each group will perform following experiments on the case study.

Exp No.	Title of the Experiment
1	Formulate a case study and create an E-R Diagram. Mapping of E-R model to Relational
1	Model.
	To create a database and populate using SQL commands (With constraints)
	Data Definition Language- Create, Alter, Drop, Rename, Truncate
2	Data Manipulation Language- Insert, Update, Delete, Select
2	Constraints-Not Null, Unique Key, Primary Key, Foreign Key, Check, Dropping a constraint.
	To perform DCL, TCL commands
3	Data Control Language: Grant, Revoke, Roles
	Transaction Control Language: Commit, Rollback, Save point
4	To perform Date, Time, Arithmetic and Set operation on database.
5	To perform Aggregate function and Group by- Having clause on database
	To perform Join operations on database.
6	Equijoins, Non-Equijoins, Self Joins, Outer Join, cross Join
7	To retrieve a data using Subquery.
8	To Create a different view of database.
9	To examine integrity of database using Triggers.
10	To Create a application using above concept using front end and back end.

Textbooks

Sr. No.	Title	Title Edition Authors		Publisher	Year
1	Database System Concepts	Seventh	Korth, Slberchatz, Sudarshan	McGraw Hill	2019
2	Fundamentals of Database Systems	Sixth	Elmasri and Navathe	PEARSON Education	2011

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Database Management Systems	Third	Raghu Ramkrishnan and Johannes Gehrke	ТМН	2003
2	Database Management Systems	First	G. K. Gupta	McGra w Hill.	2018
3	SQL, PL/SQL programming language of ORACLE	Forth	Ivan Bayross	ВРВ	2010

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SEMESTER IV

				SEM IV						
Sr. N o	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	0	E	С
1	Basic & Engg. Sciences	BSES	CS205	Statical Methods in Computer Science	3	0	0	6	9	3
2	Basic & Engg. Sciences *	FOM-II	MA204	Foundation of Mathematics-II*	2	1	0	0	3	3
3	Skill enhancement course	SEC	AS202	Python Programming for Data science	0	1	2	4	7	2
4	Humanities	HSSM-II	HS2XX	Course II	2	0	0	3	5	2
5		PCC	CS206	Operating Systems	3	0	2	4	9	4
6	Program Core Courses (12 credits)	PCC	CS207	Design and Analysis of Algorithms	3	0	2	4	9	4
7		PCC	CS208	Computer Communications and Networks	3	0	2	4	9	4
8	Cocurricular Courses	CC (LLC)	LLCXX	LLCIV		0	0	1	2	1
9	Multidisciplina ry Minor	MDM	MDEC1X	MDM-I	To be defined by others			3		
			Tota						5 0	23

	Summer term (For Lateral Entry Students)											
Sr. No	Course Categor y	Abbreviatio n	Course Code	Course Name	L	T	P	0	E	С		
1	Basic &	DCEC	CS201	Discrete Structures and Graph Theory	3	0	0	5	8	3		
2	Engg. Sciences	BSES -	CS205	Statical methods in Computer Science	3	0	0	6	9	3		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

- Students are expected to start working for the Mini Project I during the summer.
- Research internship of minimum 2 months for the "Honors by Research" for 6 credits- HR21 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course	Course Name	Teach	Teaching Scheme (Hrs/week)						Credits Assigned			
(Category) Code	Course Name	L	Т	P	О	E	L	T	P	Total		
	Statistical methods in	3	0	0	6	9	3	0	0	3		
(BSCS)	Computer Science	Examination Scheme										
	(Linear Algebra,	Comp	Component		ISE		MSE		SE	Total		
CS205	Probability and	Theory			50		50		100	200		
	Statistics)	Labo	ratory									

Pre-requi	site Course Codes, if any.	Engineering Calculus/Foundations of Mathematics-I and						
		Differential Equations and Complex Analysis/Foundations of						
		Mathematics-II						
Course O	Course Objective: To develop mathematical skills for solving engineering problems.							
Learning	Outcomes (LO): At the End of	the course students will be able to						
CS205.1	Solve a homogeneous and non-homogeneous system of linear equations using rank of a matrix							
CS205.2		Apply concepts of eigenvalues and eigenvectors to calculate functions of a square matrix, google rank vector and solve systems of differential equations using diagonalisation of matrices						
CS205.3	Familiarize with basic probabil	ity axioms, rules and their applicability						
CS205.4	Identify the characteristics of va	arious discrete and continuous distributions.						
CS205.5		and variances using t and F; chi-square distribution tests						
CS205.6	Find correlation and regression	and fit different types of curves.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CS205.1	3											
CS205.2	3											
CS205.3	3	1										
CS205.4	2											
CS205.5		2										
CS205.6		2										

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS205.1							
CS205.2							
CS205.3							
CS205.4	2						
CS205.5	2						
CS205.6	2						

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

BLOOM'S Levels Targeted (Pl. Tick appropriate)

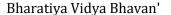
Remember	Understand	Apply	Analyze	Evaluate	Create
✓	✓	✓			

Theory Component

Modul	Unit	Topics	Ref	Hrs.
e No.	No.	•	•	
1	Title	Introduction to Linear Algebra	3,4, 6,7	08
	1.1	Review of basic matrices, row echelon form, reduced row echelon form, rank of a matrix		
	1.2	Consistency and solution of simultaneous linear homogeneous and non-homogeneous equations, Applications of solving systems of equations in traffic control.		
2	Title	Eigenvalues and Eigenvectors	3,4, 6,7	07
	2.1	Eigenvalues, Eigenvectors and its properties, Cayley Hamilton Theorem and its applications, Diagonalisation of matrices.		
	2.2	Application to find Google Page Rank, Function of a square matrix, Solving system of differential equations using diagonalization		
3	Title	Probability and Random Variables	1,2	14
	3.1	Classical, relative frequency and axiomatic definitions of probability, addition rule and multiplication rule, Conditional Probability, Bayes' Theorem and Independence		
	3.2	Discrete, continuous and mixed random variables, Probability Mass Function, Probability Density Function		
	3.3	Mathematical expectation, moments, moment generating function		
	3.4	Standard discrete distributions: Binomial, Poisson and Normal		
4	Title	Hypothesis Testing	1,2	9
	4.1	Statistical hypothesis, Null and Alternate Hypothesis, test of hypothesis and significance, Type I and Type II errors, Level of significance.	,	
	4.2	Special tests of significance for large samples and small samples- F, chi-square,z,t-test.		
5	Title	Correlation and Regression	1,2	4
	5.1	Spearman and Karl-Pearson Rank Correlation, Regression Analysis, Curve Fitting by method of least squares.		
6	Self	1. Applicability of Bayes Theorem		5
	Stud	2. Examples to test goodness of fit using Chi-square		
	y	3. Normal form		
		4. Singular Value Decomposition		
		5. Derogatory and non-derogatory matrices		
			Total	42*

^{*}Total of 42 hours does not include the self-study hours.

Sardar Patel Institute of Technology


(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Text Books

Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Introduction to Probability and Statistics for Engineers and Scientists	Fourth	Sheldon M. Ross	Academic Foundation	2011
2	Probability and Statistics for Engineers and Scientists	Eighth	E.Walpole, R.H.Mayers, S.L.Mayers, K.Ye	Pearson Education	2007
3	Linear Algebra and its Applications	Fourth	Gilbert Strang	Cengage	2014
4	Higher Engineering Mathematics	Forty Fourth	Dr. B.S.Grewal	Khanna Publications	2020

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
5	Elementary Linear Algebra with Applications	Sixth	H Anton and C Rorres	John Wiley and Sons	2010
6	Advanced Engineering Mathematics	Twenty Eighth	H.K.Das	S.Chand	2014
7	Advanced Engineering Mathematics	Tenth	Erwin Kreysizg	John Wiley and Sons	2011

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category)	Course Name		heme ek)	Credits Assigned						
Code		L	T	P	0	E	L	T	P	Total
(PC)	Python programming for Data Science Lab	0	1	2	4	7	0	0	2	2
			Exam	n Scheme						
		Component		-	ISE		MSE		ESE	Total
CS403		Theory								
		Laboratory			100			1	100	200

Pre-requisite Course Codes, if any.	Linear Algebra, Probability
	and Statistics, Programming Lab-I,II

Course Objective: To provide students with a comprehensive understanding of the fundamental concepts, tools, and techniques used in data science and data visualization. This course is designed to introduce students to the basic principles of data science and data visualization, including libraries used for Data Science, data exploration, data preprocessing, EDA, data visualization and basic model building.

Learning Ou	tcomes (LO): At the End of the course, students will be able to							
CS403.1	Demonstrate the need of libraries used in Data Science.							
CS403.2	ake use of different tools and techniques for Data Visualization							
CS403.3	Analyze the data performance using the EDA process.							
CS403.4	Develop Linear Regression and Logistic Regression Models							

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CS403.1	3	3	3	3	3				2	2	2	
CS403.2	3	3	3	3	3				2	2	2	
CS403.3	3	3	3	3	3				2	2	2	
CS403.4	3	3	3	3	3				2	2	2	

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

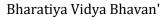
	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
CS403.1					1	1
CS403.2					1	1
CS403.3					1	1
CS403.4					1	1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

2200110 20,000 1018000 (11, 11011 abbitobiling)							
Remember	Understand	Apply √	Analyze√	Evaluate	Create		

Lab Experiments on

Exp No.	Topics		
1	Case Study on Python Programming Fundamentals	1,2	


Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	Your first program, Types, Expressions, Variables, String Operations, Conditions				
	and Branching, Loops, Functions				
2	Case Study on Python Data Structures:				
3	Case Study on Python for Data Science: Numpy Library	1,2			
	Basics of Numpy, Creating NumPy Arrays: Mathematical Operations on NumPy				
	Arrays				
4	Case Study on Python for Data Science: Pandas Library	1,2,4			
Basics of Pandas, Data Frames, Indexing and Slicing, Operations on Data Fra					
	GroupBy and Aggregate Functions, Merging Data Frames, and Pivot Tables				
5	Case Study on Data Visualization				
	Univariate Analysis using Matplotlib and Seaborn	3,4			
	Categorical Ordered and Unordered Univariate Analysis				
6	Case Study on Data Visualization	3,4			
	Bivariate and Multivariate Analysis using Matplotlib and Seaborn				
	Numerical-Numerical Analysis, Numerical-Categorical Analysis, Categorical-				
	Categorical Analysis				
7	Case Study on Exploratory Data Analysis	3,4,5			
	Fixing the rows and columns, Overfitting and Underfitting, Impute/Remove missing				
	values, Feature Engineering Techniques,				
8	Case Study on Exploratory Data Analysis	3,4,5			
	Feature Reduction Techniques, Handling Outliers, Normalization, and				
	Standardizing values				
9	Case Study on Linear Regression	3,4,5			
	Simple Linear Regression, and Multiple Linear Regression				
10	Case Study on Logistic Regression	3,4,5			
	Univariate Logistic Regression, Multivariate Logistic Regression				

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Python for Data Science Handbook:	Second	Jake VanderPlas	O'Reilly	2022
	Essentials Tools for Working with Data				
2	Python for Data Analysis: Data	Third	Wes McKinney	O'Reilly	2022
	Wrangling with Pandas, NumPy, and				
	Jupyter				
3	Hands-On Exploratory Data Analysis	First	Suresh Kumar	Packt	2020
	with Python		Mukhiya, Usman		
			Ahmed		
4	Python Data Science Essentials	Third	Alberto Boschetti,	Packt	2018
			Luca Massaron		

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

5	Mastering Python for data science,	First	Samir Madhavan	PACKT	2015
---	------------------------------------	-------	----------------	-------	------

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1.	Visualization Analysis and	1st	Tamara	A K Peters/CRC	2014
	Design		Munzner	Press	
2.	Python Data Visualization	First	Kalilur	BPB	2021
	Essentials Guide		Rahman		
3.	Python for Data Analysis: Data		McKinney,	O'Reilly Media,	2012
	Wrangling with Pandas,		W.	Inc.	
	NumPy, and IPython.				

Web References:

- 1. https://www.analyticsvidhya.com/
- 2. https://www.simplilearn.com/
- 3. https://www.kaggle.com
- 4. https://matplotlib.org/
- 5. https://seaborn.pydata.org/

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category)	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned					
Code		\mathbf{L}	T	P	0	E	L	T	P	Total
	Operating Systems	3	0	2	4	9	3	0	1	4
(PC)		Examination Scheme								
		Component ISE			MSE ESE Total					
CE/CSE	operating systems	The	eory		50		50	1	.00	200
206		Labor	atory		50				50	100

Pre-requisit	e Course Codes, if any.							
Course Obje	Course Objective:							
Learning O	utcomes (LO)): At the End of the course students will be able to							
CE206.1	Comprehend the primitive concepts of Operating System services and System							
	Programming functionality.							
CE206.2	Articulate process scheduling algorithms in effective execution of processes.							
CE206.3	Acquaint with efficient process synchronization techniques in effective execution of							
	programs.							
CE206.4	Analyze virtual memory management algorithms in effective allocation of main							
	memory usage.							
CE206.5	Evaluates various algorithms of File Storage & I/O management for performance and							
	quality criterion.							

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
										0	1	2
CE206.	1											1
CE206.	2	2	2	2								2
CE206.	2	2	2	2								2
CE206.	2	2	2	2								2
CE206. 5	2	2	2	2								2

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CE206.1							
CE206.2							
CE206.3							

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

CE206.4				
CE206.5				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	8		/		
Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

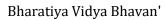
Modul	Unit			
e No.	No.	Topics	Ref.	Hrs.
1	Title	Introduction to Operating Systems and system software	1,2	6
	1.1	Operating Systems – Introduction, Structure and Principles of		
		Operations of Operating Systems, Classes of Operating Systems,		
		Batch Processing Systems, Multiprogramming Systems, Time		
		Sharing Systems, Real Time Operating Systems, linker,loader,		
		static and dynamic linking, virtual machine		
2	Title	Process and Threads Management	1,2	9
	2.1	Processes – Process abstraction, System calls for process		
		management, Process execution mechanisms, Process Scheduling,		
		Inter-process communication		
	2.2	Introduction to threads and concurrency – Single threaded process,		
		Multithreaded process, process vs thread, Why threads, scheduling		
		threads, creating threads, threads with shared data, race condition		
		and synchronization .		
3	Title	Process Coordination	1,2	12
	3.1	Process Synchronization - Critical-Section Problem, Peterson's		
		Solution. Locks- basic idea, building a lock, hardware atomic		
		instructions, test- and-set, Spin lock using compare - and – swap,		
		sleeping mutex, Semaphores, Classic Problems of		
	3.2	Synchronization, Monitors, Synchronization Examples Deadlock - Characterization, Methods for Handling Deadlocks,		
	3.4	Detection, Prevention, Avoidance, Recovery methods Deadlock.		
4	Title	Memory Management	1,2	8
7	4.1	Memory Management Strategies - Swapping, Contiguous	1,2	
	7.1	Memory Allocation, Segmentation, Paging, Structure of the Page		
		Table.		
	4.2	Virtual Memory Management - Demand Paging, Allocation of		
		Frames, Thrashing, Memory-Mapped Files, Allocating Kernel		
		Memory, Operating System Examples.		
5	Title	File Management		7
	5.1	Storage Management - Disk Structure, Time taken for I/O		1
		operation, Disk Scheduling, Disk Management, RAID,		
		introduction to (solid-state storage) SSD		
	5.2	File-System - File-System Structure. Allocation Methods, Free		
		Space Management		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	5.3	UNIX Internal File Representation – Files and directories, file abstraction, directory tree, operations on files and directories,		
		hard links, soft links Inodes, .		
6	Self	1) Explore Features, characteristics and CPU scheduling of Real	1,2,	
	Stud	Time Operating System along an example	3	
	y	2) Explore the requirements of Kernel, CPU Scheduling,		
		Disk Scheduling for Multimedia Systems		
		3) Explore all UNIX System Calls for File System.		
Total (*)	Not incl	uded)		42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)


Sr. No	Title of the Experiment
1	Introduction to Linux tools
2	Write a program for creating a static/dynamic link library
3	Write a program to implement various systems call of a process
4	Write a multithreaded program to show race condition
5	Implement different CPU scheduling algorithms
6	Program to implement shared memory and perform read and write operations on it for a given application
7	Program on process synchronization .
8	Write a program for memory management by building a custom memory manager to allocate memory dynamically .
9	Write a program to simulate disk scheduling.
10	Write a program to prevent destructive update of files

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Operating System Concepts	Ninth	Abraham Silberschatz, Peter B Galvin, Greg Gagne	Wiley	2012
2	Operating Systems: Three Easy Pieces		REMZI H. ARPACI-DUSSEAU , ANDREA C. ARPACI- DUSSEAU .	(University of Wisconsin- Madison)	2014
3	UNIX Internals: The New Frontiers	First	Uresh Vahalia	Prentice Hall	1995
4	Design of the UNIX Operating Systems	First	Maurice J. Bach	Prentice-Hall	1990

Reference Books

Sr. No Title Edition Authors Publisher Year

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

1	Operating Systems: Internals and Design Principles	Eighth	William Stallings	Pearson	2014
2	Modern Operating Systems	Fourth	Andrew S. Tanenbaum, Herbert Bos	Pearson	2014

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course(Category)	Course Name	Т	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total
	Design and Analysis of	3	0	2	4	9	3	0	1	4
(PC)		Examination Scheme								
, ,		Comp	onent		ISE]	MSE	E	SE	Total
GG207	Algorithms	The	eory		75		75	1	50	300
CS205			atory		50				50	100

Pre-requ	isite Course Codes, if any.							
Course	Objective: Apply various algorithmic design paradigms, analyze their asymptotic							
performar	nce, and synthesize efficient algorithms for common engineering design scenarios.							
Learning	Outcomes (LO): At the End of the course students will be able to							
CS205.1	Analyze the complexity of algorithms and apply divide-and-conquer strategy to solve							
C3203.1	problems.							
CS205.2	Make use of string matching algorithms to solve problems.							
CS205.3	Apply the concept of greedy method, dynamic programming and Maximum Flow.							
CS205.4	Apply the idea of backtracking, branch and bound strategy to solve problems.							
CS205.5	Make use of NP-completeness and Approximation Algorithms							

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CS205.1	3	3	2	1	-	-	1	-	-	-	-	-
CS205.2	3	2	2	1	-	-	1	-	-	-	-	-
CS205.3	3	3	2	1	-	-	1	-	-	-	-	-
CS205.4	3	3	2	1	-	-	1	-	-	-	-	-
CS205.5	2	2	3	1	-	_	1	_	_	_	_	_

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
CS205.1	-	-	-	-	-	-	-
CS205.2	-	-	-	-	-	-	-
CS205.3	-	-	-	-	-	-	-
CS205.4	-	-	-	_	-	-	-
CS205.5	_	-	-	_	_	-	-

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

BLOOM'S Levels Targeted

Remember	Understand	Apply	Analyze √	Evaluate	Create
----------	------------	-------	-----------	----------	--------

Theory Component

Modul	Unit		Ref	TT
e No.	No.	Topics	•	Hrs.
1	Title	Introduction to Algorithm		
	1.1	Role of Algorithms – Algorithm as Technology, Introduction to		
		design and analysis of algorithm e.g. Insertion Sort and Selection		
		Sort		
	1.2	Asymptotic Notations – All asymptotic $(O, \Theta, \Omega, o, \theta \text{ and } \omega)$		8
		notations, Common Functions, Recurrence Relation and Solutions		
	1.2	Methods: Substitution, Recursion-tree and Master Theorem.		
	1.3	Divide and Conquer – Concepts, Maximum Subarray Problem,		
		Closest Pair, Strassen's matrix multiplication, Quick-Sort, Merge-Sort, Selection in Linear Time		
2	Title	Greedy Methods and String Matching		
	2.1	Disjoint Sets DS – Disjoint set operations, Linked List		
		Representation, Disjoint Set Forests		
	2.2	Greedy Approach – Prim's and Kruskal's MST algorithms,		
		Dijkstra's and Bellman Ford's SSSP algorithms, Activity selection,		10
		Fractional knapsack problem, Job sequencing with deadlines		10
		problem.		
	2.3	String Matching algorithms – Naïve string matching Algorithm,		
		Rabin Karp algorithm, String matching with finite automata, Knuth-		
_		Morris-Pratt algorithm		
3	Title	Dynamic Programming and Maximum Flow Problem		
	3.1	Dynamic Programming – Concepts, Longest Common		
		Subsequence, Matrix Chain Multiplication, Optimal Binary Search		
	3.2	Trees, 0/1 knapsack problem, All Pairs Shortest Paths – Shortest Paths and Matrix		10
	3.4	Multiplications, Floyd-Warshall algorithm, Johnson's algorithm for		10
		sparse graphs.		
	3.3	Flow Networks – Graph-theoretic definition of Flow networks,		
		Ford-Fulkerson and Maximum Bipartite Matching		
4	Title	Backtracking and Branch-and-bound		
	4.1	Backtracking – General method, 8-queen problem (N-queen		
		problem), Sum of subsets, Graph coloring, 0/1 Knapsack problem		8
	4.2	Branch-and-bound – General method, 0/1 knapsack problem,		
		Travelling Salesman problem, 15 puzzle problem		
5	Title	Approximation and NP-Completeness		
	5.1	NP-Completeness – Polynomial time, Polynomial-time		6
		verification, NP-completeness reducibility and proof.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	5.2	Approximation – Introduction, Vertex-cover, Travelling-salesman problem and set-covering.		
6	Self Stud	Amortized analysis – Aggregate analysis, accounting and Potential Method, Dynamic Table.		
	y			
			Total	42

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Experiment based on common mathematical functions.
2	Experiment based on divide and conquers approach.
3	Experiment based on greedy approach
4	Experiment using dynamic programming approach
5	Experiment based on maximum flow
6	Experiment based on graph Algorithms
7	Experiment using Backtracking strategy
8	Experiment using branch and bound strategy
9	Experiment based on Approximation Algorithms
10	Experiment based on string matching/amortized analysis.

Text Books

Sr. No	Title Edition A		Authors	Publisher	Year
1	Introduction to Algorithms	Third	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	2009
2	Fundamentals of Computer Algorithms	Second	Horowitz E, Sahni S and S. Rajasekaran	Galgotia Publications	2010

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	The Design and analysis of algorithms	First	Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman	Pearson Educatio n India	2006
2	Fundamentals of Algorithmics	First	Gilles Brassard, Paul Bratley	Prentice Hall	1995

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course(Category) Code	Course Name	Т	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
	Computer Communications	3	0	2	4	9	3	0	1	4
(PC)		Examination				n Scheme				
,		Comp	onent		ISE]	MSE	E	SE	Total
CS207	and Networks	Theory			50		50	1	.00	200
CS207		Labor	atory		50				50	100

Pre-requisite Course Codes, if any.

Course Objective: The objective of the Computer Communication Networks course is to equip students with comprehensive knowledge and practical skills in the field of network engineering. The course aims to prepare individuals for various specialized roles within the networking industry, enabling them to proficiently design, implement, and manage computer communication networks. Throughout the course, students will develop expertise in areas such as network analysis, administration, architecture, and specialized technical roles. By the end of the program, graduates should be capable of seamlessly navigating between the technical and business aspects of network management, and be well-prepared for roles such as network engineer, network manager, network analyst, network administrator, network specialist, network technician, and network architect. The curriculum will emphasize hands-on experience, problem-solving, and staying abreast of the latest advancements in networking technologies, ensuring that students are well-positioned to contribute effectively in the dynamic and evolving field of computer communication networks.

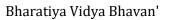
Learning C	Learning Outcomes (LO):At the End of the course students will be able to							
LO1	Identify key principles and concepts of computer networking and the Internet.							
LO2	Evaluate the effectiveness of different protocols in diverse network applications.							
LO3	Apply knowledge of protocols to configure transport layer settings for optimal data transmission.							
LO4	Apply the knowledge of subnetting, routing mechanisms and Software Defined Networking.							
LO5	Analyze the performance and security of different access network technologies.							

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
LO1	2	2			2							1
LO2	2	2			2							1
LO3	2	2			2							1
LO4	2	2			2							1
LO5	2	2			2							1

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058


LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
LO1	2						
LO2	2						
LO3	2						
LO4	2						
LO5	2						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

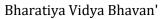
Remember	Understand	Apply —	Analyze	Evaluate	Create

Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Computer Communication and The Internet	1,2	06
	1.1	Internet: A Nut and Bolts Description, A Services Description, Protocol. The Network Edge: Access Network, The Network Core: Packet Switching, Circuit Switching, A Network of Networks	1,2	
	1.2	Delay, Loss, Throughput in Packet Switched Networks: Overview of Delay in Packet Switched Networks, Queuing Delay and Packet Loss, End to End Delay, Throughput in Computer Networks.	1,2	
	1.3	Protocol Layers and their Service Models: Layered Architecture and their Encapsulation.	1,2	
	1.4	Data and Signals: Analog and Digital, Periodic analog signals, Digital signals, Transmission impairment.	2	
2	Title	Application Layer	1,2	06

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

		2.1	Principles of Network Applications: Network Applications Architecture, Processes Communicating, Transport Services Available to Applications, Transport Services Provided by the Internet, Application Layer Protocols.	1,2	
		2.2	The Web and HTTP: Overview of HTTP, Non Persistent and Persistent Connections, HTTP Message Format, User Server Interaction: Cookies, Web Catching, The Conditional Get.	1,2	
	File Transfer Ftp: Ftp Commands and Replies. FTP, SMTP, Mail Access Protocol (IMAP, POP), DNS				
3		Title	Transport Layer	1,2	10
		3.1	Introduction and Transport-Layer Services: Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet	1,2	
		3.2	Multiplexing and Demultiplexing	1,2	
		3.3	Connection less Transport - UDP: UDP Segment Structure, UDP Checksum	1,2	
	Principles of Reliable Data Transfer: Building a Reliable Data Transfer Pipelined Reliable Data Transfer Protocols, Go Back-N (GBN), Selectiv (SR),				
		3.5	Connection-Oriented Transport - TCP: The TCP Connection, TCP Segment Structure, Round-Trip Time Estimation and Timeout, Reliable Data Transfer, Flow Control, TCP Connection Management	1,2	
		3.6	Principles of Congestion Control: The Causes and the Costs of Congestion, Approaches to Congestion Control. additive-increase, multiplicative-decrease (AIMD)	1,2	
4	Titl e	The Net	work Layer	1,2	10
	4.1	Introduc	tion: Forwarding and Routing, Network Service Models.	1,2	
	4.2		Circuit and Datagram Networks: Virtual-Circuit Networks, Datagram Networks, of VC and Datagram Networks.	1,2	
	4.3 Router: Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane.		1,2		
	4.4			1,2	
	4.5		Algorithms: The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Algorithm, Hierarchical Routing	1,2	

Sardar Patel Institute of Technology


(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

				T		
	4.6	Software Defined Networking: Introduction and Overview	R3			
5	Titl e	The Link Layer: Links, Access Networks, and LANs	1,2	10		
	5.1	Introduction to the Link Layer: The Services Provided by the Link Layer, Implementation of the Link Layer	1,2			
	5.2	5.2 Error-Detection and Correction Techniques: Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC)				
	5.3	Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols, Taking-Turns Protocols.	1,2			
	5.4	WiFi: 802.11 Wireless LANs:The 802.11 Wireless LAN Architecture,The 802.11 MAC Protocol,The IEEE 802.11 Frame, Advanced Features in 802.11, Personal Area Networks: Bluetooth	1,2			
6*	Titl e	Self Study Topic	1,2	5*		
	6.1	Transmission Media: Guided media, Unguided media: Wireless	1,2			
	6.2	ARP and RARP usage	1,2			
	6.3	Multicast routing and Broadcast routing	1,2			
	6.4	Routing in the Internet: Intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP	1,2			
	6.5	Network Function Virtualization	R3			
Tota	1			42		
ДП :		1 (1 1 1 1 T (1 1 0 1				

^{*}This module hrs. not included in Total 42 hrs

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment
1	Network Setup: Network configuration, commands and troubleshooting
2	Network Socket Programming
3	Network Socket Programming using Python Scapy
4	Server Configuration-I
5	Server Configuration-II
6	Network Protocol Analysis

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

7	Network Simulation using Cisco Packet Tracer
8	Software Defined Networking using Mininet
9	Switch and WLAN Configuration
10	Installation and configuration of network traffic analyzer NTOP
11	Network Server Automation using Ansible
12	Network mapping techniques using open source tools

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Computer Networking: Top Down Approach	8th	James Kurose and Kieth Ross	Pearson	2020
2	Data Communication and Networking	5th	Behrouz Forouzan	McGraw Hill	2020

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Computer Networks	Fifth	Andrew Tanenbaum	Pearson	2013
2	Computer Networks	Third	Larry L. Peterson and Bruce Davie	Morgon Huffman	2003
3	SDN and NFV Simplified	First	Jim Doherty	Addison Wesley	2016

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SEMESTER V

				SEM V						
Sr. No	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	0	Е	С
1	Experiential Learning	ELC	PR1	Mini Project I	0	0	4	4	8	2
2		PCC	CS301	Distributed Computing	2	0	2	6	10	3
3		PCC	CS302	Software Engineering	2	0	2	6	10	3
4	Program Core Courses (17	PCC	CS303	Artificial Intelligence and Soft Computing	3	0	2	6	11	4
5	Credits)	PCC	CS304	Theory of Computation	3	0	0	5	8	3
6		PCC	CS305	Cryptography and Network Security	3	0	2	5	10	4
7	Multidisciplinar y Minor	MDM	MDEC2X	MDM-II	To be defined by others			4		
		Total			13	0	12	32	57	23

- Research internship of minimum 1 month for the "Honors by Research" for 3 credits HR31 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

Sardar Patel Institute of Technology

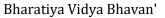
(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SEMESTER VI

				SEM VI						
Sr. N o	Course Category	Abbreviatio n	Course Code	Course Name	L	Т	P	0	E	С
1	Program Core Courses	PCC	CS306	Human Machine Interaction	3	0	2	4	9	4
2	(7credits)	PCC	CS307	Machine Learning	2	0	2	5	9	3
3	Multidisciplinar y Minor	MDM	MDEC3X	MDM-III	To be defined by others			3		
4	Experiential Learning	ELC	PR3-I	Main Project Stage I		0	4	4	8	2
5	Program Elective Courses	PEC	CS3X1	PE-I	2	0	1	4	7	3
6	Program Elective Courses	PEC	CS3X2	PE-II	2	0	1	4	7	3
7	Skill Enhancement Course	SEC	CS308	DevOps Lab	0	1	2	2	5	2
				Total	9	1	1 2	2 3	45	2 0

- Research internship of minimum 2 month for the "Honors by Research" for 6 credits HR32 (Not for DSY)
- For Enrollment to Honors by research, Minimum CGPA must be 8.25

Sardar Patel Institute of Technology


(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SEMESTER VII

			SEM	VII					
Course Category	Abbreviatio n	Course Code	Cours e Name	L	Т	P	0	E	С
Multidisciplinar y Minor	MDM	MDEC4X	MDM- IV		To be de	efined ot	hers		4
Program Elective Courses	PEC	CS4X3	PE-III	2	0	1	4	7	3
Program Elective Courses	PEC	CS4X4	PE-IV	2	0	1	4	7	3
Open Elective	ОЕ	OE1	OE-I	2	0	1	4	7	3
Experiential Learning	ELC	PR3-II	Main Projec t Stage II	0	0	8	4	12	4
			Total	6	0	11	16	33	17

[•] Research internship of minimum 1 month for the "Honors by Research" for 3 credits HR41 (Not for DSY)

[•] For Enrollment to Honors by research, Minimum CGPA must be 8.25

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SEMESTER VIII

	SEM VIII									
Sr. No	Course Category	Abbre viatio n	Cours e Code	Course Name	L	Т	P	0	E	С
1	Open Elective	OE	OE2	OE-II**	2	0	1	4	7	3
2	Experienti al Learning	ELC	INTR INTI PR4	Research/ Industry Internship/Major Project Stage III***	0	0	24	12	36	11
				Total	2	0	25	16	43	14

^{**} To be completed from MOOCs

^{***}Students neither taking research or industry internship nor willing to extend their project work can earn additional 11 credits from Swayam Platform or NPTEL or registering courses from any peer institution of higher learning., besides open elective program elective courses offered by the institute.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

PROGRAM ELECTIVE COURSES

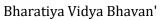
4 Electives are sufficient to specialize in a particular domain.

Track	PE-I CS3X1	PE-II CS3X2	PE-III CS4X3	PE-IV CS4X4
Emerging	CS311:	CS312:	CS413:	CS414:
Networking	Digital Forensic	Cloud Computing	Block chain	IT Infrastructure
Technologies			Technology	Monitoring and
				Management
Emerging AI	CS321:	CS322:	CS423:	CS424:
	Natural Language	Deep Learning	Generative AI	Explainable AI
	Processing			
Data Analytics	CS331:	CS332:	CS433:	CS434:
	Business analytics	Big data Analytics	Data Warehouse	AI for Healthcare
	with Python		and Mining	Analytics
Digital	CS341:	CS332:	CS433:	CS434:
Visualization	Fundamentals of	Augmented Reality	Computer Vision	Visual Intelligence
	Signal & Image	&Virtual Reality [AR-		
	Processing	VR]		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

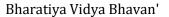
Indicative list of Multidisciplinary Minors


MDM Sequels for EXTC

- Computer Engineering
- AIML
- Data Science
- Interface and Experience Design
- IT Infrastructure

Course Category of Multidisciplinary Minor	MDM-I (Semester IV)	MDM-II (Semester V)	MDM-III (Semester VI)	MDM-IV (Semester VII)
Computer Engineering	MDCE11: Database Management Systems	MDCE12: Data Structures and Algorithms	MDCE13: Cloud Computing	MDCE14: Internet and Web Technology
Artificial Intelligence and Machine Learning	MDCE21: Fundamentals of NNFL	MDCE22: Artificial Intelligence Machine Learning	MDCE23: Natural Language Processing	MDCE24: Image Processing and Pattern Recognition
Data Science	MDCS31: Fundamentals of Data Science	MDCS32: Data Analytics and Visualization	MDCS33: Decision Making and Business Intelligence	MDCS34: Social Media Analytics
Interface and Experience Design	MDCS41: UI/UX Fundamentals	MDCS42: Design Thinking and Innovations	MDCS43: Human Computer Interaction	MDCS44: Total Experience Design
IT Infrastructure	MDCE51: IT Infrastructure and DevOps Lab	MDCE52: Virtualization and Computing	MDCE53: SDN and NFV	MDCE54: Network Management

MDM Sequels for CE/CSE


- Industrial IoT
- Digital Signal Processing
- Electronics Communication
- VLSI
- Mathematics and Statistics
- Finance
- Economics

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course Category of Multidisciplinary Minor	MDM-I (Semester IV)	MDM-II (Semester V)	MDM-III (Semester VI)	MDM-IV (Semester VII)
Industrial IoT	MDEC11: Fundamental of Internet of Things	MDEC12: Embedded "C" and Micro Python for IoT	MDEC13: IOT Communication and Network Layer Protocols	MDEC14: IoT Applications and Security
Digital Signal Processing	MDEC21: Digital Signal Processing	MDEC22: Digital Image Processing	MDEC23: Multimedia Signal Processing	MDEC24: Digital Signal Processor System Design
Electronics Communication	MDEC31: Linear Electronics Circuit	MDEC32: Principles of Communication & Systems	MDEC33: Data Compression and Encryption	MDEC34: Wireless Communication and Networks
VLSI	MDEC41: Hardware Description Language programming	MDEC42: Digital CMOS VLSI Design	MDEC43: VLSI Physical Design	MDEC44: ASIC Verification

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

SYLLABUS MDM Sequels for EXTC

Course Category of Multidisciplinary Minor	MDM-I (Semester IV)
Computer Engineering	MDCE11: Database Management Systems
Artificial Intelligence	MDCE21: Fundamentals of NNFL
and Machine Learning	
Data Science	MDCS31: Fundamentals of Data Science
Interface and Experience	MDCS41: UI/UX Fundamentals
Design	
IT Infrastructure	MDCE51: IT Infrastructure and DevOps Lab

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category)	Course Name	Teach	ing Sc	Scheme (Hrs/week)			Credits Assigned				
Code		L	T	P	О	E	L	T	P	Total	
	Database Management Systems	2	0	2	4	08	3	0	0	3	
MDM-I		Examination Scheme									
		Comp	onent		ISE		MSE	E	ESE Total		
MDCE11		The	eory		50		50		100	200	
		Labor	atory		50				50	100	

Pre-requisite	Course Codes, if any.					
Course Obje	ctive:					
Learning Outcomes (LO): At the End of the course students will be able to						
MDCE11:.1	Demonstrate understanding of given system to construct a database model					
MDCE11:.2	Apply various Relational and SQL commands on the populated database					
MDCE11.3	Examine the functional dependencies to make a normalized database system and transaction processing techniques on a database					
MDCE11.4	Illustrate query processing and optimization method on a database					

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Und	derstand Apply	Analyze	Evaluate	Create
--------------	----------------	----------------	----------	--------

Theory Component

	Joinpone			l
Modul	Unit	Tonica	Ref.	Hrs.
e No.	No.	Topics	Kei.	пгъ.
1	Title	Database Concepts and ER Modeling	1,2	
	1.1	Introduction to basic concept of Database, File system V/s Database		05
		system, Users of Database system, Database Administrator, Data		
		Independence		
	1.2	The Entity-Relationship (ER) Model, Extended Entity-Relationship		
		(EER) Model, Database integrity		
2	Title	Relational Algebra And SQL	1,2	07
	2.1	Relational model, Relational query languages, Relational algebra, Tuple		
		and domain calculus		
	2.2	Structured Query Language: Data Definition Commands, Data		
		Manipulation commands, Data Control commands, Join expressions,		
		views, Triggers		
3	Title	Normalization And Transaction Processing	1,2	05
	3.1	Design guidelines for relational schema, Functional dependencies		
	3.2	Normal Forms- 1NF, 2 NF, 3NF, BCNF		
4	Title	Transaction Processing	1,2	06
		Transactions, ACID properties, Concurrency Control, Recovery		
		Serializability, Recoverability, Lock-based, Timestamp-based,		
		Validation-based protocols.		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

5	Title	Indexing And Query Optimization:	1,2	05
	4.1	Row-wise and column database, database buffering. Indexing, B+-tree		
		indices		
	4.2	Query Processing, Query Optimization		
6	Self	NO SQL-Data type, Database creation, Basic command for creation,		
	Study	updating and querying the database, Mongo dB, Applications of Hyper		
		Graph DB, cloud database		
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

SN	Title of the Experiment
1	Formulate a case study and create an E-R Diagram. Mapping of E-R model to Relational Model.
2	To create a database and populate using SQL commands (With constraints) • Data Definition Language- Create, Alter, Drop, Rename, Truncate • Data Manipulation Language- Insert, Update, Delete, Select Constraints-Not Null, Unique Key, Primary Key, Foreign Key, Check, Dropping a Constraint
3	To perform DCL, TCL commands • Data Control Language: Grant, Revoke, Roles • Transaction Control Language: Commit, Rollback, Save point
4	To perform Date, Time, Arithmetic and Set operation on database.
5	To perform Aggregate function and Group by- Having clause on database
6	To perform Join operations on database. • Equijoins, Non-Equijoins, Self Joins, Outer Join, cross Join
7	To retrieve data using a Subquery.
8	To Create a different view of the database.
9	To examine the integrity of the database using Triggers.
10	To study distributed databases/Normalization

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Database System	7 th	Korth, Slberchatz,		
	Concepts		Sudarshan	McGraw – Hill	2019
2	Fundamentals of		Elmasri and Navathe	PEARSON	
	Database Systems	6 th		Education	2011

©Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Database Management Systems	3 rd	Raghu Ramkrishnan and Johannes Gehrke	ТМН	2003
2	Database Management Systems	1 st	G. K. Gupta	McGraw – Hill.	2018

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
		2	0	2	4	8	2	0	1	3
MDM-1	Fundamentals of NNFL	Examination Scheme								
		Component]	ISE		MSE	E	SE	Total
MDCE21		The	ory		50		50	1	.00	200
		Labor	atory		50				50	100

Pre-requi	Pre-requisite Course Basic understanding of mathematics, probability, and programming.						
Course O	Course Objective: This course focuses on the fundamental of Neural networks and Fuzzy Logic						
along with	along with its application. Students will be able to design an expert system using neural networks						
and Fuzzy	logic system for implementation of real-world applications.						
Course O	utcomes (CO): At the End of the course students will be able to						
AI3X1.1	Identify the various characteristics of Neural Network techniques in building intelligent machines						
AI3X1.2	Apply the supervised and unsupervised Neural Network Learning algorithm to solve real world engineering problems.						
AI3X1.3	Design Fuzzy Logic Controller System						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO12	PSO1
AI3X1.1	2	2		2			
AI3X1.2	2	2		2	3	2	1
AI3X1.3	2	2	2	2	3	2	1

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Theory Component

Mod ule No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Neural Networks	T1,	
	1.1	Basics of Neural Networks: Introduction to Neural Networks,	T2	12
		Biological Neural Networks, Models of ANN with its terminologies,	T3,	
		Activation functions and its types	R1	
	1.2	McCulloch-Pitts Model, Linear separability, Hebb Network		
	1.3	Supervised Learning algorithms: Perceptron (Single-Layer		
		perceptron: Learning Rule and Applications), Multi-Layer		
		Perceptrons (MLPs), Backpropagation Algorithm: Training MLPs		
	1.4	Activation Functions Vanishing Gradient Problem and Solutions		
	1.4	Un-Supervised Learning algorithms: Hebbian Learning, Winner takes all, Self-Organizing Maps KSOFMN, Learning Vector Quantization.		
2	Title	Fuzzy Logic, Classical Set and Fuzzy Relations		10
<u> </u>	2.1	Introduction to Fuzzy Logic, Classical and Fuzzy Sets, Membership	T2,	10
	2.1	Functions, Classical and Fuzzy set operations, and properties of	T3,T4,	
		classical and Fuzzy sets. Fuzzy Logic Operators: AND, OR, NOT	R1, R3	
	2,2	Classical and Fuzzy Relations: Cartesian product of relation, Fuzzy	111,113	
	2.2	Max-Min and Max-Product Composition, Fuzzy extension principle		
3	Title	Fuzzy control system design	T2,	6
	3.1	Fuzzy Inference System and its types, Fuzzification ,Defuzzification, Designing Fuzzy logic control systems.	T3 T4	
	3.2	Mamdani and Sugeno Fuzzy Inference Systems		
4	Self	Associative Memory Network, Architecture of Neuro-Fuzzy	-	5
	Study	Networks(ANFIS and CANFIS), Performance Metrics for Neural		
	-	Networks and Fuzzy Logic Systems, Model Evaluation Techniques:		
		Cross-Validation, ROC Analysis, Optimization Techniques:		
		Genetic Algorithms, Particle Swarm Optimization		
			Total	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr.	Title of the Experiment
No	
1	To implement Transfer/Activation Functions for a given problem statement.
2	To design ANN to implement logic gates.
3	To implement Hebb Network for a given problem statement.
4	To design and implement ANN (perceptron) for a given problem statement using Joone
	Editor
5	Write a program using Single Layer perceptron
6	To implement the Supervised Learning algorithm.
7	To implement the Unsupervised Learning algorithm
8	To implement Fuzzy Sets for a given problem statement
9	To implement Fuzzy Relations for a given problem statement
10	To design and implement Fuzzy Logic controller for a given problem statement

Text Books

Sr.	Title	Editio	Authors	Publisher	Year
No		n			
T1	Introduction to Artificial	1st	Jacek M. Zurada	Jaico	1994
	Neural Systems			Publisher	
T2	Principles of Soft Computing	3rd	Sivanandan and Deepa	Pearson	2019
				Edition	
Т3	Fuzzy logic with engineering	3rd	Ross, Timothy J	John Wiley	2011
	applications			& Sons	
T4	Neural Networks, Fuzzy Logic	Kindl	S.Rajasekaran and	PHI	2013
	and Genetic Algorithms	e	G.A.Vijayalakshmi Pai	Learning	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
R1	Neural Network	2nd	Hagan,	CENGAGE	2014
	Design		Demuth,	Learning	
			Beale		
R2	Neuro-Fuzzy and Soft Computing	1st	JS.R.Jang .	Pearson	1996
R3	Introduction to Soft Computing	1st	Sameer Roy	Pearson	2013

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course	Course Name	Teach	Teaching Scheme (Hrs/week)						Credits Assigned			
(Category) Code	Course Name	L	T	P	О	E	L	T	P	Total		
		2	0	2	5	10	2	0	1	3		
MDM-I			Examination					ion Scheme				
	Fundamentals of Data	Component			ISE		MSE	E	ESE	Total		
MDCS31	Science	Theory			50		50		100	200		
		Labor	atory		50				50	100		

Pre-requisite Course	Codes, if any.	_
-----------------------------	----------------	---

Course Objective: To provide students with a comprehensive understanding of the fundamental concepts, tools, and techniques used in data science and data visualization. This course is designed to introduce students to the basic principles of data science and data visualization, including libraries used for Data Science, data exploration, data preprocessing, EDA, data visualization and basic model building.

Learning Ou	tcomes (LO): At the End of the course students will be able to
MDCS31.1	Demonstrate the need of libraries used in Data Science.
MDCS31.2	Make use of different tools and techniques for Data Visualization
MDCS31.3	Analyze the data performance using the EDA process.
MDCS31.4	Develop Linear Regression and Logistic Regression Models for a given case study.

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDCS31.1	-	2	-	2	3	-	-	-	-	-	-	-
MDCS31.2												
MDCS31.3	2	2	2	2	3	-	-	-	-	-	-	-
MDCS31.4	-	2	2	-	3	-	-	-	1	1	-	-

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MDCS31.1							
MDCS31.2							
MDCS31.3							
MDCS31.4							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze ✓	Evaluate	Create

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Theory Component

Module	Unit	Topics	Ref.	Hrs
No.	No.	_		
1	Title	Python for Data Science		06
	1.1	Introduction to Data Science and its roles in Modern Society,		
		Descriptive Statistics		
	1.2	Working with Numpy	1,2,	
		Basics of Numpy, Creating NumPy Arrays, Mathematical	3	
		Operations on NumPy Arrays		
	1.3	Working with Pandas	1,2,	
		Basics of Pandas, Data Frames, Indexing and Slicing,	3	
		Operations on Data Frames, GroupBy and Aggregate Functions,		
		Merging Data Frames, Pivot Tables		
2	Title	Data Visualization		06
	2.1	Data Visualization using Matplotlib	1,3,	
		Bar Graphs, Scatter Plots, Line Graphs, Histogram, Box Plots,	7	
		Sub Plots		
	2.2	Data Visualization using Seaborn	1,3,	
		Distribution Plots, Pie Charts, Bar Charts, Scatter Plots, Box	8	
		Plots, Pair Plots, Heat Maps, Line Charts		
4	Title	Data Preprocessing and Exploratory Data Analysis		06
•	4.1	Data Sourcing	5,6	00
	4.1	Public Data and Private Data, Web Scraping	3,0	
	4.2	Data Cleaning	5,6	
	7.2	Fixing the rows and columns, Overfitting and Underfitting,	3,0	
		Impute/Remove missing values, Feature Engineering Techniques,		
		Feature Reduction Techniques, Handling Outliers, Standardizing		
		values		
	4.3	Univariate Analysis	5,6	
	4.3		3,0	
	4.4	Categorical Ordered and Unordered Univariate Analysis	F 6	
	4.4	Bivariate and Multivariate Analysis	5,6	
		Numerical-Numerical Analysis, Numerical-Categorical		
_	TD:41	Analysis, Categorical-Categorical Analysis		10
5	Title	Regression	<i></i>	10
	5.1	Linear Regression	5,6	
		Simple Linear Regression, Multiple Linear Regression		
	5.2	Logistic Regression	5,6	
		Univariate Logistic Regression, Multivariate Logistic		
		Regression Model Building and Evaluation		
6	Self	Plotly, Different Visualization visualization techniques other than	1,2,	
	Study	Python and Tableau.	5	
			Total	28

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component:

Sr. No	Title of the Experiment
1	Working with Python Basics
2	Working with Python Data Structures
3	Working with Python Numpy Library
4	Working with Python Pandas Library
5	Working with Python Matplotlib Library
6	Working with Python Seaborn Library
7	Exploratory Data Analysis on the given Case Study
8	Develop a Linear Regression Model on the given Case Study
9	Develop a Logistic Regression Model on the given Case Study
10	Mini Project based on a case study.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Python for Data Science Handbook:	Second	Jake VanderPlas	O'Reilly	2022
	Essentials Tools for Working with Data				
2	Python for Data Analysis: Data	Third	Wes McKinney	O'Reilly	2022
	Wrangling with Pandas, NumPy, and				
	Jupyter				
3	Python Data Visualization Essentials	First	Kalilur Rahman	BPB	2021
	Guide				
4	Data Visualization Through	First	George Peck	McGraw	2020
	TABLEAU			Hill	
5	Hands-On Exploratory Data Analysis	First	Suresh Kumar	Packt	2020
	with Python		Mukhiya, Usman		
			Ahmed		
6	Python Data Science Essentials	Third	Alberto Boschetti,	Packt	2018
			Luca Massaron		

Web References:

- 7) https://matplotlib.org/
- 8) https://seaborn.pydata.org/

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category)	Course Name	Teach	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total	
		2	0	2	4	8	2	0	1	3	
MDM I					Examination Scheme						
	UI/UX Fundamentals	Comp	onent		ISE		MSE		SE	Total	
MDCS41		The	eory		50		50		.00	200	
		Labor	ratory		50				50	100	

Pre-requisite Course Codes, if any. AI305

Course Objective: The aim of the UI/UX course is to provide students with the knowledge of user-centered design, user -centered methods in design, graphic design on screens, simulation and prototyping techniques, usability testing methods, interface technologies and user centered design in corporate perspective. The course is organized around a practical project with iterative design of a graphical user interface to organize information about users into useful summaries with affinity diagrams, to convey user research findings with personas and scenarios and to learn the skill of sketching as a process for user experience design. The students will be given exposure to wireframing and Prototyping software in the various UI/UX Design tools.

Learning O	utcomes (LO):At the End of the course students will be able to
MDCS41.1	Understand iterative user-centered design of graphical user interfaces
MDCS41.2	Apply the user Interfaces to different devices and requirements
MDCS41.3	Design prototype for the given design problems.

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation) CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

Strong, 2-Moderate, 1-Weak Correlation)

8 7	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MDCS41.1	2	-		2								
MDCS41.2	-	-	2	-	2							
MDCS41.3	-	-	-	-	2				-	-		2

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	S (
Remember	Understand	Apply	Analyze	Evaluate	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to UI and UX	T1-	
	1.1	What is User Interface Design (UI) -The Relationship Between UI	T4	06
		and UX, Roles in UI/UX, Menus, Tabs, Bottom tab bar, Buttons		
		(including "Call to action" or CTA) ,Accordion ,Carousel		

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

		,Breadcrumbs, Modals Forms ,etc		
	1.2	A Brief Historical Overview of Interface Design, Interface		
		Conventions, Designer vs. developer, Skills to be a top designer.		
2	Title	User Interface Design Elements	T2,T	06
	2.1	Approaches to Screen Based UI, Template vs Content, Formal	4	
		Elements of Interface Design, Active Elements of Interface		
		Design, Composing the Elements of Interface Design, UI Design		
		Process, Visual Communication design component in Interface		
		Design, Spacing and the grid.		
3	Title	Colors, Typography & Fonts	T1-	05
	3.1	Display Text (Such as Headings) versus Body Text, Legibility,	T4	
		Type Trends, Typeface Selection & Pairing, Where to Get Web		
		Fonts, Ideal Line Height, Column Width (Line Length),		
		Hyphenation & Justification		
	3.2	Color Harmonies, Creating Contrast with Color, Guidelines for		
		Proper Color Usage		
4	Title	Design Guidelines and Process	T1-	06
	4.1	UX Basics- Foundation of UX design, Good and poor design,	T4	
		Understanding Your Users, Designing the Experience, Elements		
		of user Experience, Visual Design Principles, Functional Layout,		
		Interaction design, Introduction to the Interface, Navigation		
		Design, User Testing, Developing and Releasing Your Design		
5	Title	Design Tools	T2,T	03
	5.1	Adobe Photoshop, Illustrator, Figma, AdobeXD, Pencil Project	4	
		tool.		
	Self	Mobile Ecosystem: Platforms, Application frameworks: Types of		02
	Stud	Mobile Applications: Widgets, Applications.		
	y			
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Case Study to understand and know about UI elements for Zomato, Swiggy app.
2	To create logo for restaurant based on given scenario using Adobe XD.
3	To create basic app for creating your own profile using Adobe XD.
4	To create different icons for giving ratings using Pencil tool. Use your own creativity.
5	To customize typography for logo for fitness app in UI design using Pencil tool. Use your own creativity.
6	To evaluate Good and Bad Design of UI elements for IRCTC website
7	To customize typography for logo for selling variations of plants, pots and fertilizers in UI

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	design using Illustrator tool.
8	To create GUI for creating feedback form for taking feedback from students and teachers
	by using only icons which are familiar to users and choose colors based on the scenario and
	describe the reason for such selection for the same.
9	To create simple Web UI for newly developed Pencil company (like apsara, doms etc.) using different kinds of Menus in an application using Figma tool.
10	To create simple flower selling application in Mobile app layout, laptop screen layout and
	Desktop layout and compare using Figma tool.

Refernces:

- 1. A Project Guide to UX Design: For user experience designers in the field or in the making (2nd. ed.). Russ Unger and Carolyn Chandler. New Riders Publishing, USA, 2012.
- 2. The Elements of User Experience: User-Centered Design for the Web and Beyond, Second Edition Jesse James Garrett, Pearson Education. 2011.
- 3. The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and Techniques, Third Edition Wilbert O. Galitz, Wiley Publishing, 2007.
- 4. The UX Book Process and Guidelines for Ensuring a Quality User Experience, Rex Hartson and Pardha S. Pyla, Elsevier, 2012.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Course (Category) Code	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
		L	T	P	О	E	L	T	P	Total
(PC)	IT Infrastructure and DevOps Lab (ITIDL)	1	0	4	5	10	2	0	1	3
		Examination Scheme								
		Component		ISE		MS	MSE		E	Total
MDCE51		Theory		0	0		0			0
		Laboratory 100 10		100	100)	100		

Pre-requisite Cour	se Codes, if any.	Fundamentals of Computer and Coding, PSIPL, PSOOP					
Course Objective: Evaluate basics of IT Infrastructure and server-side storage, work with hypervisor and virtualization, understand and utilize various DevOps technologies.							
Learning Outco	Learning Outcomes (LO): At the End of the course students will be able to						
LO1	Evaluate various IT Infrastru	actures (Hardware and Software)					
LO2	Experiment with Hypervisor	s					
LO3	Create a Version Control En	vironment and perform Continuous Integration					
LO4	Create Continuous Deploym	ent Environment					

LO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

РО	PO2		PO4	PO5	PO6	PO 7	PO 8	PO9	PO10	PO11	PO12
LO1		1		3				2		1	
LO2		1		3				2		1	
LO3		1		3				2		1	
LO4		1		3				2		1	

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

LO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
LO1							
LO2							
LO3							
LO4							
LO5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

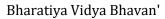
Module No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to IT Infrastructure (Hardware/Software)	2,3	3
	1.1	Introduction to Computing Hardware: Multicore systems, RAMs, HDD, SSD, NVME Drives, MultiGigabit Networks, System Fundamentals: BIOS/UEFI, Multiboot environment, PXE, thin clients		
	1.2	Linux Basics: Installation, Partitioning of Hard Disk, Dual Booting, Boot Loader (GRUB), kernel booting, system V initialization, file system, bash environment, user mode, kernel mode, user administration, system commands and utilities, system administration, network configuration, software installation and maintenance, standard storage and backup systems		
2	Title	Server-side Infrastructure and Storage	2,3	2
	2.1	Server infrastructure, Rack, Tower server, hot-swappable systems, RAID configuration, Fault Tolerance and Load Balancing, Server Administration (Web, FTP, NFS, DNS, DHCP, DATABASE, TELNET/SSH)		
	2.2	Network Attached Storages (NAS) and SAN, distributed file systems-NFS, Caching,		
3	Title	Virtualization and Hypervisors	1,2,	3

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	3.1	Concept of Virtualization, Types of Virtualization, VirtualBox, VMWare, KVM, QUEMU, ZEN	3,4	
	3.2	Container Technologies: Docker and podman Minikube and Kubernetes		
4	Title	DevOps Basics: Git, Jenkins, and SonarQube	1,4	3
	4.1	Concept of DevOps, CI/CD Pipeline Introduction to Git: Distributed version control system. Importance in tracking changes, collaboration, and branch management.		
	4.2	Jenkins for Continuous Integration Introduction to Jenkins: Overview of Continuous Integration/Continuous Deployment (CI/CD), Key features and plugins		
	4.3	SonarQube for Code Quality Analysis: Introduction to SonarQube, Importance of code quality and security Key metrics and issues tracked by SonarQube		
5	Title	Advanced DevOps: Continuous Deployment and Infrastructure as Code	1,4	3
	5.1	Ansible for Configuration Management: Introduction to Ansible Agentless configuration management tool. Overview of key features and architecture, Ansible Basics, Understanding Playbooks and Roles YAML syntax		
	5.2	Writing basic playbooks, Inventory Management Static and dynamic inventories, Advanced Ansible usage, Ansible Modules and Plugins		
	5.3	Terraform for Infrastructure as Code: Introduction to Terraform Terraform Basics, Understanding Terraform Configuration Files HCL syntax, Writing basic .tf files, Advanced Terraform Usage, Modules and State Management, Creating and using modules Managing state files and remote state,		
	5.4	Terraform in Action, Provisioning Infrastructure, Using providers (AWS, Azure, GCP), Applying and destroying infrastructure		
6	Self Study	Chef Configuration tool, Puppet Configuration tool, Grafana Monitoring tool, Prometheus Monitoring tool, NagiOS Configuration tool, OpenVAS, TravisCI tool, CircleCI Tool		6
Total				14*

^{*}Excluding Self Study



Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No.	Title of the Experiment					
1	Installation and configuration of Linux in dual boot environment: Partitioning of Hard Disk, Creating and selecting partitions for Linux (Root, swap, special partitions),					
2	Linux OS system administration- login/logout, user creation, desktop management, file and directory related commands, system information commands, process management, memory management, filesystems commands, package installation/deletion, network commands, backup and restore, shell scripting					
3	Installation and configuration of Hypervisors (VirtualBox/VMWare/KVM): Loading the Virtual Machines (VMMs), Network configuration and management					
4	Installation and Configuration of Docker (Container) and Docker-compose: Docker usage, docker images, docker containers, docker networking, docker monitoring, managing the containers					
5	Kubernetes using Minikube					
6	Installation and configuration of Git: Basic Git Commands, Basic Operations, Working with Remote Repositories-Connecting to Remote Repos Setting up SSH keys Adding remote repositories: git remote add origin <url> Fetching and Pulling from Remotes Understanding git fetch vs. git pull ,Collaboration and Workflow, Branching Strategies, Feature branches GitFlow, Handling Merge Conflicts, Rebasing vs. Merging</url>					
7	Installing and Configuration of Jenkins: Installation Steps, Using Docker Configuring Jenkins, Initial Setup, Jenkins Dashboard, Creating a Jenkins user, Setting Up Jobs and Pipelines, Freestyle projects, Pipeline projects, Jenkinsfile basics, Declarative vs. Scripted Pipelines Creating a Simple Pipeline, Stages, steps, and post actions, Integrating Jenkins with Git Setting Up Git Repositories in Jenkins, Polling SCM Webhooks, Building and Testing Code Automated builds, Running test suites, Advanced Jenkins Usage Using Plugins Commonly used plugins (Git plugin, Pipeline plugin, etc.) Distributed Builds, Master-slave configurations					
8	Installation and configuration of SonarQube for Code Quality Analysis: Installing SonarQube, Installation Steps, Configuring SonarQube Initial Setup, SonarQube DashboardCreating a SonarQube user and projects Connecting to Databases, Configuring database settings (PostgreSQL, MySQL, etc.) Running SonarQube Analysis, Setting Up SonarQube Scanners SonarQube Scanner CLI, Integrating with Maven, Gradle, and other build tools Analyzing a Project Configuring sonar-project.properties Running the scanner and interpreting the results Integrating SonarQube with Jenkins Installing SonarQube Plugin in Jenkins					

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

	Setting Up a Jenkins Job for SonarQube Analysis Configuring analysis parameters Running SonarQube analysis as part of Jenkins pipeline Advanced SonarQube Usage Custom Quality Profiles and Gates Creating and managing quality profiles Setting up quality gates
9	Installation and configuration of Ansible for Configuration Management: Agentless configuration management tool. Overview of key features and architecture, Ansible Basics, Understanding Playbooks and Roles, YAML syntax Writing basic playbooks, Inventory Management, Static and dynamic inventories, Advanced Ansible usage, Ansible Modules and Plugins
10	Terraform for Infrastructure as Code: Installation Steps, Terraform Configuration Files, HCL syntax Writing basic .tf files, Advanced Terraform Usage, Modules and State Management Creating and using modules, Managing state files and remote state Applying and destroying infrastructure

Text Books

OTES	OURS								
Sr. No.	Title	Edition	Authors	Publisher	Year				
1	Learning DevOps - Second Edition: A comprehensive guide to accelerating DevOps culture adoption with Terraform, Azure DevOps, Kubernetes, and Jenkins	Second	M. Krief	Packt	2022				
2	Practical Linux System Administration: A Guide to Installation, Configuration, and Management	First	Kenneth Hess	O'Reilly	2023				
3	Linux For Beginners	Twenty Fourth	Papercut Limited	Papercut Limited	2024				
4.	Building Cloud and Virtualization Infrastructure: A Hands-on Approach to Virtualization and Implementation of a Private Cloud Using Real-time Usecases	First	Mrs.Lavanya S Dr. Venkatachalam K Dr. Saravanakumar N M Dr. Balamurugan S	BPB Publications	2021				

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	The DevOps Handbook	First	Gene Kim, Jez Humble, Patrick Debois, John Willis, Nicole Forsgren	IT Revolution Press	2021